-
1
-
-
0039885660
-
-
American Mathematical Society, Providence, RI
-
A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary Subdivision, American Mathematical Society, Providence, RI, 1991.
-
(1991)
Stationary Subdivision
-
-
Cavaretta, A.S.1
Dahmen, W.2
Micchelli, C.A.3
-
2
-
-
0003990952
-
Lectures on differential geometry
-
River Edge, NJ
-
S. S. Chern, W. Chen, and K. S. Lam, Lectures on Differential Geometry, World Scientific, River Edge, NJ, 1999.
-
(1999)
World Scientific
-
-
Chern, S.S.1
Chen, W.2
Lam, K.S.3
-
3
-
-
0028494805
-
A general framework of multivariate wavelets with duals
-
C. K. Chui and C. Li, A general framework of multivariate wavelets with duals, Appl. Comp. Harmon. Anal., 1 (1993), pp. 368-390.
-
(1993)
Appl. Comp. Harmon. Anal.
, vol.1
, pp. 368-390
-
-
Chui, C.K.1
Li, C.2
-
4
-
-
0033239768
-
Regularity of multivariate refinable functions
-
A. Cohen, K. Gröchenig, and L. F. Villemoes, Regularity of multivariate refinable functions, Constr. Approx., 15 (1999), pp. 241-255.
-
(1999)
Constr. Approx.
, vol.15
, pp. 241-255
-
-
Cohen, A.1
Gröchenig, K.2
Villemoes, L.F.3
-
5
-
-
0035080580
-
Diffusion tensor imaging: Concepts and applications
-
M. D. Denis Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat, Diffusion tensor imaging: Concepts and applications, J. Magnetic Resonance Imaging, 13 (2001), pp. 534-546.
-
(2001)
J. Magnetic Resonance Imaging
, vol.13
, pp. 534-546
-
-
Denis Le Bihan, M.D.1
Mangin, J.F.2
Poupon, C.3
Clark, C.A.4
Pappata, S.5
Molko, N.6
Chabriat, H.7
-
6
-
-
33745765305
-
-
talk at the IMI "Approximation and Computation" meeting, Charleston, South Carolina
-
D. L. Donoho, Wavelet-type Representation of Lie-Valued Data, talk at the IMI "Approximation and Computation" meeting, Charleston, South Carolina, 2001.
-
(2001)
Wavelet-type Representation of Lie-Valued Data
-
-
Donoho, D.L.1
-
7
-
-
0022663198
-
Interpolation through an iterative scheme
-
S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl., 114 (1986), pp. 185- 204.
-
(1986)
J. Math. Anal. Appl.
, vol.114
, pp. 185-204
-
-
Dubuc, S.1
-
8
-
-
0001821903
-
Subdivision schemes in computer-aided geometric design
-
W. A. Light, ed., Oxford University Press, London
-
N. Dyn, Subdivision schemes in computer-aided geometric design, in Advances in Numerical Analysis, Vol.II, W. A. Light, ed., Oxford University Press, London, 1992, pp. 36-104.
-
(1992)
Advances in Numerical Analysis
, vol.2
, pp. 36-104
-
-
Dyn, N.1
-
9
-
-
56249096912
-
Polynomial reproduction by symmetric subdivision schemes
-
N. Dyn, K. Hörmann, M. Sabin, and Z. Shen, Polynomial reproduction by symmetric subdivision schemes, J. Approx. Theory, 155 (2008), pp. 28-42.
-
(2008)
J. Approx. Theory
, vol.155
, pp. 28-42
-
-
Dyn, N.1
Hörmann, K.2
Sabin, M.3
Shen, Z.4
-
10
-
-
85095851103
-
Subdivision schemes in geometric modelling
-
N. Dyn and D. Levin, Subdivision schemes in geometric modelling, Acta Numer., 11 (2002), pp. 73-144.
-
(2002)
Acta Numer.
, vol.11
, pp. 73-144
-
-
Dyn, N.1
Levin, D.2
-
11
-
-
55349135938
-
Smoothness analysis of subdivision schemes on regular grids by proximity
-
P. Grohs, Smoothness analysis of subdivision schemes on regular grids by proximity, SIAMJ. Numer. Anal., 46 (2008), pp. 2169-2182.
-
(2008)
SIAMJ. Numer. Anal.
, vol.46
, pp. 2169-2182
-
-
Grohs, P.1
-
12
-
-
70349878581
-
Smoothness equivalence properties of univariate subdivision schemes and their projection analogues
-
P. Grohs, Smoothness equivalence properties of univariate subdivision schemes and their projection analogues, Num. Math., 113 (2009), pp. 163-180.
-
(2009)
Num. Math.
, vol.113
, pp. 163-180
-
-
Grohs, P.1
-
13
-
-
67651149925
-
Smoothness of multivariate interpolatory subdivision in Lie groups
-
P. Grohs, Smoothness of multivariate interpolatory subdivision in Lie groups, IMA J. Numer. Anal., 29 (2009), pp. 760-772.
-
(2009)
IMA J. Numer. Anal.
, vol.29
, pp. 760-772
-
-
Grohs, P.1
-
14
-
-
77951499053
-
Approximation order from stability of nonlinear subdivision schemes
-
to appear
-
P. Grohs, Approximation order from stability of nonlinear subdivision schemes, J. Approx. Theory, to appear.
-
J. Approx. Theory
-
-
Grohs, P.1
-
15
-
-
77957299546
-
Stability of manifold-valued subdivision schemes and multiscale transformations
-
to appear
-
P. Grohs, Stability of manifold-valued subdivision schemes and multiscale transformations, Constr. Approx., to appear.
-
Constr. Approx.
-
-
Grohs, P.1
-
16
-
-
69949162429
-
Interpolatory wavelets for manifold-valued data
-
P. Grohs and J. Wallner, Interpolatory wavelets for manifold-valued data, Appl. Comp. Harmon. Anal., 27 (2009), pp. 325-333.
-
(2009)
Appl. Comp. Harmon. Anal.
, vol.27
, pp. 325-333
-
-
Grohs, P.1
Wallner, J.2
-
17
-
-
0032388122
-
Approximation properties of multivariate wavelets
-
R. Q. Jia, Approximation properties of multivariate wavelets, Math. Comp., 67 (1998), pp. 647- 666.
-
(1998)
Math. Comp.
, vol.67
, pp. 647-666
-
-
Jia, R.Q.1
-
18
-
-
84980162923
-
Riemannian center of mass and mollifier smoothing
-
H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977), pp. 509-541.
-
(1977)
Comm. Pure Appl. Math.
, vol.30
, pp. 509-541
-
-
Karcher, H.1
-
19
-
-
0032056236
-
Stationary subdivison for general scaling matrices
-
V. Latour, J. Müller, and W. Nickel, Stationary subdivison for general scaling matrices, Math. Z., 227 (1998), pp. 645-661. (Pubitemid 128336453)
-
(1998)
Mathematische Zeitschrift
, vol.227
, Issue.4
, pp. 645-661
-
-
Latour, V.1
Muller, J.2
Nickel, W.3
-
20
-
-
33745778314
-
Multiscale representations for manifold-valued data
-
I. Ur Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schröder, Multiscale representations for manifold-valued data, Multiscale Model. Simul., 4 (2005), pp. 1201- 1232.
-
(2005)
Multiscale Model. Simul.
, vol.4
, pp. 1201-1232
-
-
Ur Rahman, I.1
Drori, I.2
Stodden, V.C.3
Donoho, D.L.4
Schröder, P.5
-
21
-
-
33745784258
-
Smoothness analysis of subdivision schemes by proximity
-
J. Wallner, Smoothness analysis of subdivision schemes by proximity, Constr. Approx., 24 (2006), pp. 289-318.
-
(2006)
Constr. Approx.
, vol.24
, pp. 289-318
-
-
Wallner, J.1
-
22
-
-
24644495206
-
1 analysis of subdivision schemes on manifolds by proximity
-
1 analysis of subdivision schemes on manifolds by proximity, Comput. Aided Geom. Design, 22 (2005), pp. 593-622.
-
(2005)
Comput. Aided Geom. Design
, vol.22
, pp. 593-622
-
-
Wallner, J.1
Dyn, N.2
-
23
-
-
45849118645
-
Smoothness properties of Lie group subdivision schemes
-
J. Wallner, E. Nava Yazdani, and P. Grohs, Smoothness properties of Lie group subdivision schemes, Multiscale Model. Simul., 6 (2007), pp. 493-505.
-
(2007)
Multiscale Model. Simul.
, vol.6
, pp. 493-505
-
-
Wallner, J.1
Nava Yazdani, E.2
Grohs, P.3
-
25
-
-
77952025614
-
-
Geometry Preprint 2009/03, TU Graz, Graz, Austria
-
A. Weinmann, Smoothness of nonlinear subdivision schemes with arbitrary dilation matrix, Geometry Preprint 2009/03, TU Graz, Graz, Austria, 2009.
-
Smoothness of Nonlinear Subdivision Schemes with Arbitrary Dilation Matrix
, pp. 2009
-
-
Weinmann, A.1
-
26
-
-
77952066041
-
Nonlinear subdivision processes in irregular meshes
-
to appear
-
A. Weinmann, Nonlinear subdivision processes in irregular meshes, Constr. Approx., to appear.
-
Constr. Approx.
-
-
Weinmann, A.1
-
27
-
-
38649127310
-
Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach
-
G. Xie and T. P.-Y. Yu, Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach, SIAM J. Numer. Anal., 45 (2007), pp. 1200- 1225.
-
(2007)
SIAM J. Numer. Anal.
, vol.45
, pp. 1200-1225
-
-
Xie, G.1
Yu, T.P.-Y.2
-
28
-
-
77952029766
-
Approximation order equivalence properties of manifold-valued data subdivision schemes
-
submitted for publication, April
-
G. Xie and T. P.-Y. Yu, Approximation order equivalence properties of manifold-valued data subdivision schemes. Manuscript, submitted for publication, April 2008.
-
(2008)
Manuscript
-
-
Xie, G.1
Yu, T.P.-Y.2
-
29
-
-
69949136713
-
Smoothness equivalence properties of general manifold-valued data subdivision schemes
-
G. Xie and T. P.-Y. Yu, Smoothness equivalence properties of general manifold-valued data subdivision schemes, Multiscale Model. Simul., 7 (2008), pp. 1073-1100.
-
(2008)
Multiscale Model. Simul.
, vol.7
, pp. 1073-1100
-
-
Xie, G.1
Yu, T.P.-Y.2
-
30
-
-
85120507243
-
Smoothness equivalence properties of interpolatory Lie group subdivision schemes
-
to appear
-
G. Xie and T. P.-Y. Yu, Smoothness equivalence properties of interpolatory Lie group subdivision schemes, IMA J. Numer. Anal., to appear.
-
IMA J. Numer. Anal.
-
-
Xie, G.1
Yu, T.P.-Y.2
|