-
2
-
-
7444252189
-
Normal multiresolution approximation of curves
-
DAUBECHIES, I., RUNBORG, O. & SWELDENS, W. (2004) Normal multiresolution approximation of curves. Constr. Approx., 20, 399-463.
-
(2004)
Constr. Approx
, vol.20
, pp. 399-463
-
-
DAUBECHIES, I.1
RUNBORG, O.2
SWELDENS, W.3
-
3
-
-
34249975165
-
Symmetric iterative interpolation processes
-
DESLAURIERS, G. & DUBUC, S. (1986) Symmetric iterative interpolation processes. Constr. Approx., 5, 49-68.
-
(1986)
Constr. Approx
, vol.5
, pp. 49-68
-
-
DESLAURIERS, G.1
DUBUC, S.2
-
4
-
-
38249036972
-
Moduli of smoothness using discrete data
-
DITZIAN, Z. (1987) Moduli of smoothness using discrete data. J. Approx. Theory, 49, 115-129.
-
(1987)
J. Approx. Theory
, vol.49
, pp. 115-129
-
-
DITZIAN, Z.1
-
5
-
-
0004281234
-
Interpolating wavelet transforms
-
Technical Report. Available at
-
DONOHO, D. L. (1992) Interpolating wavelet transforms. Technical Report. Available at http://www-stat.stanford. edu/ donoho/Reports/1992/interpol.pdf.
-
(1992)
-
-
DONOHO, D.L.1
-
6
-
-
0001821903
-
Subdivision schemes in computer aided geometric design
-
W. A. Light ed, Oxford University Press, pp
-
DYN, N. (1992) Subdivision schemes in computer aided geometric design. Advances in Numerical Analysis (W. A. Light ed.), vol. II. Oxford University Press, pp. 36-104.
-
(1992)
Advances in Numerical Analysis
, vol.2
, pp. 36-104
-
-
DYN, N.1
-
8
-
-
55349135938
-
Smoothness analysis of subdivision schemes on regular grids by proximity
-
GROHS, P. (2008) Smoothness analysis of subdivision schemes on regular grids by proximity. SIAM J. Numer. Anal., 46, 2169-2182.
-
(2008)
SIAM J. Numer. Anal
, vol.46
, pp. 2169-2182
-
-
GROHS, P.1
-
9
-
-
67651149063
-
-
GROHS, P. & WALLNER, J. (2008) Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties. Approximation Theory XII: San Antonio 2007 (M. Neamtu & L. Schumaker eds). Brentwood, TN: Nashboro Press, pp. 181-190.
-
GROHS, P. & WALLNER, J. (2008) Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties. Approximation Theory XII: San Antonio 2007 (M. Neamtu & L. Schumaker eds). Brentwood, TN: Nashboro Press, pp. 181-190.
-
-
-
-
10
-
-
0007071399
-
On the equivalence of the K-functional and moduli of continuity and some applications
-
Constructive Theory of Functions of Several Variables W. Schemp & K. Zeller eds, Springer, pp
-
JOHNEN, H. & SCHERER, K. (1977) On the equivalence of the K-functional and moduli of continuity and some applications. Constructive Theory of Functions of Several Variables (W. Schemp & K. Zeller eds). Lecture Notes in Mathematics, vol. 571. Springer, pp. 119-140.
-
(1977)
Lecture Notes in Mathematics
, vol.571
, pp. 119-140
-
-
JOHNEN, H.1
SCHERER, K.2
-
11
-
-
33745778314
-
Multiscale representations for manifold-valued data
-
UR-RAMAN, I., DRORI, I., STODDEN, V., DONOHO, D. & SCHROEDER, P. (2005) Multiscale representations for manifold-valued data. Multiscale Model. Simul., 4, 1201-1232.
-
(2005)
Multiscale Model. Simul
, vol.4
, pp. 1201-1232
-
-
UR-RAMAN, I.1
DRORI, I.2
STODDEN, V.3
DONOHO, D.4
SCHROEDER, P.5
-
12
-
-
0003429074
-
Lie groups, Lie algebras and their representations
-
New York, NY: Springer
-
VARADARAJAN, S. C. (1984) Lie groups, Lie algebras and their representations. Graduate Texts in Mathematics. New York, NY: Springer.
-
(1984)
Graduate Texts in Mathematics
-
-
VARADARAJAN, S.C.1
-
13
-
-
33745784258
-
Smoothness analysis of subdivision schemes by proximity
-
WALLNER, J. (2006) Smoothness analysis of subdivision schemes by proximity. Constr. Approx., 24, 289-318.
-
(2006)
Constr. Approx
, vol.24
, pp. 289-318
-
-
WALLNER, J.1
-
14
-
-
24644495206
-
1 analysis of subdivision schemes on manifolds by proximity
-
1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des., 22, 593-622.
-
(2005)
Comput. Aided Geom. Des
, vol.22
, pp. 593-622
-
-
WALLNER, J.1
DYN, N.2
-
15
-
-
45849118645
-
Smoothness properties of Lie group subdivision schemes
-
WALLNER, J., NAVA YAZDANI, E. & GROHS, P. (2006) Smoothness properties of Lie group subdivision schemes. Multiscale Model. Simul., 6, 493-505.
-
(2006)
Multiscale Model. Simul
, vol.6
, pp. 493-505
-
-
WALLNER, J.1
NAVA YAZDANI, E.2
GROHS, P.3
-
16
-
-
33745787874
-
Intrinsic subdivision with smooth limits for graphics and animation
-
WALLNER, J. & POTTMANN, H. (2006) Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph., 25, 356-374.
-
(2006)
ACM Trans. Graph
, vol.25
, pp. 356-374
-
-
WALLNER, J.1
POTTMANN, H.2
-
17
-
-
38649127310
-
Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach
-
XIE, G. & YU, T. P.-Y. (2007a) Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach. SIAM J. Numer. Anal., 45, 1200-1225.
-
(2007)
SIAM J. Numer. Anal
, vol.45
, pp. 1200-1225
-
-
XIE, G.1
YU, T.P.-Y.2
|