메뉴 건너뛰기




Volumn 39, Issue 8-9, 2010, Pages 1585-1596

Sequential estimation procedures for end points of support in a non-regular distribution

Author keywords

Asymptotic efficiency; Sequential estimation; Stopping rule

Indexed keywords

ASYMPTOTIC EFFICIENCY; ASYMPTOTICALLY EFFICIENT; CONFIDENCE INTERVAL; END POINTS; ESTIMATION PROCEDURES; EXTREME VALUE; NUMERICAL SIMULATION; POINT ESTIMATION; REGULAR DISTRIBUTION; SEQUENTIAL ESTIMATION; STOPPING RULE; UNDERLYING DISTRIBUTION;

EID: 77952005513     PISSN: 03610926     EISSN: 1532415X     Source Type: Journal    
DOI: 10.1080/03610920802422605     Document Type: Conference Paper
Times cited : (1)

References (27)
  • 2
    • 84932209868 scopus 로고
    • Asymptotic theory for estimation of location in non-regular cases, II: Bounds of asymptotic distributions of consistent estimators
    • Akahira, M. (1975b). Asymptotic theory for estimation of location in non-regular cases, II: Bounds of asymptotic distributions of consistent estimators. Reports of Statistical Application Research, Union of Japanese Scientists and Engineers 22:99-115.
    • (1975) Reports of Statistical Application Research, Union of Japanese Scientists and Engineers , vol.22 , pp. 99-115
    • Akahira, M.1
  • 3
    • 34248188393 scopus 로고    scopus 로고
    • Sequential interval estimation of a location parameter with the fixed width in the uniform distribution with an unknown scale parameter
    • Akahira, M., Koike, K. (2005). Sequential interval estimation of a location parameter with the fixed width in the uniform distribution with an unknown scale parameter. Sequential Analysis 24:63-75.
    • (2005) Sequential Analysis , vol.24 , pp. 63-75
    • Akahira, M.1    Koike, K.2
  • 6
    • 35648988164 scopus 로고    scopus 로고
    • The information inequality in sequential estimation for the uniform case
    • Akahira, M., Takeuchi, K. (2003). The information inequality in sequential estimation for the uniform case. Sequential Analysis 22:223-232.
    • (2003) Sequential Analysis , vol.22 , pp. 223-232
    • Akahira, M.1    Takeuchi, K.2
  • 7
    • 84959600617 scopus 로고
    • Large sample theory of sequential estimation
    • Anscombe, F. J. (1952). Large sample theory of sequential estimation. Proc. Camb. Phil. Soc. 48:600-607.
    • (1952) Proc. Camb. Phil. Soc. , vol.48 , pp. 600-607
    • Anscombe, F.J.1
  • 8
    • 35649008016 scopus 로고    scopus 로고
    • Multi-stage estimation procedures for the "range" of two-parameter uniform distribution
    • Chaturvedi, A., Surinder, K., Sanjeev, K. (2001). Multi-stage estimation procedures for the "range" of two-parameter uniform distribution. Metron 59:179-186.
    • (2001) Metron , vol.59 , pp. 179-186
    • Chaturvedi, A.1    Surinder, K.2    Sanjeev, K.3
  • 9
    • 0001336620 scopus 로고
    • On the asymptotic theory of fixed-width sequential confidence intervals for the mean
    • Chow, Y. S., Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Stat. 36:457-462.
    • (1965) Ann. Math. Stat , vol.36 , pp. 457-462
    • Chow, Y.S.1    Robbins, H.2
  • 10
    • 77951988529 scopus 로고
    • Sequential estimation in the uniform density
    • Cooke, P. J. (1971). Sequential estimation in the uniform density. J. Am. Stat. Assoc. 66:614-617.
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 614-617
    • Cooke, P.J.1
  • 11
    • 0001291258 scopus 로고
    • Consistency and asymptotic efficiency of two stage and sequential estimation procedures
    • Ghosh, M., Mukhopadhyay, N. (1981). Consistency and asymptotic efficiency of two stage and sequential estimation procedures. Sankhyā 43:220-227.
    • (1981) Sankhya , vol.43 , pp. 220-227
    • Ghosh, M.1    Mukhopadhyay, N.2
  • 13
    • 17844408807 scopus 로고    scopus 로고
    • A note on two-stage and sequential fixed-width intervals for the parameter in the uniform density
    • Govindarajulu, Z. (1997). A note on two-stage and sequential fixed-width intervals for the parameter in the uniform density. Stat. Probab. Lett. 36:179-188.
    • (1997) Stat. Probab. Lett. , vol.36 , pp. 179-188
    • Govindarajulu, Z.1
  • 14
    • 77951982999 scopus 로고    scopus 로고
    • Erratum
    • Erratum: Stat. Probab. Lett. 42:213-215.
    • Stat. Probab. Lett. , vol.42 , pp. 213-215
  • 15
    • 84891475733 scopus 로고
    • Sample size required to estimate the parameter in the uniform density within d units of the true value
    • Graybill, F. A., Connell, T. L. (1964). Sample size required to estimate the parameter in the uniform density within d units of the true value. J. Am. Stat. Assoc. 59:550-560.
    • (1964) J. Am. Stat. Assoc. , vol.59 , pp. 550-560
    • Graybill, F.A.1    Connell, T.L.2
  • 17
    • 34248161562 scopus 로고    scopus 로고
    • Sequential interval estimation of a location parameter with the fixed width in the non-regular case
    • Koike, K. (2007a). Sequential interval estimation of a location parameter with the fixed width in the non-regular case. Sequential Analysis 26:63-70.
    • (2007) Sequential Analysis , vol.26 , pp. 63-70
    • Koike, K.1
  • 18
    • 35649007858 scopus 로고    scopus 로고
    • Sequential point estimation of location parameter in location-scale family of non-regular distributions
    • Koike, K. (2007b). Sequential point estimation of location parameter in location-scale family of non-regular distributions. Sequential Analysis 26:383-393.
    • (2007) Sequential Analysis , vol.26 , pp. 383-393
    • Koike, K.1
  • 19
    • 0001552433 scopus 로고    scopus 로고
    • On uniform integrability and asymptotically risk-efficient sequential estimation
    • Lai, T. L. (1996). On uniform integrability and asymptotically risk-efficient sequential estimation. Sequential Analysis 15:237-251.
    • (1996) Sequential Analysis , vol.15 , pp. 237-251
    • Lai, T.L.1
  • 20
    • 21144472546 scopus 로고
    • Estimating the size-selectivity of fishing gear by conditioning on the total catch
    • Millar, R. B. (1992). Estimating the size-selectivity of fishing gear by conditioning on the total catch. J. Am. Stat. Assoc. 87:962-968.
    • (1992) J. Am. Stat. Assoc. , vol.87 , pp. 962-968
    • Millar, R.B.1
  • 21
    • 0033427211 scopus 로고    scopus 로고
    • Estimating the size-selection curves of towed gears, traps, nets and hooks
    • Millar, R. B., Fryer, R. J. (1999). Estimating the size-selection curves of towed gears, traps, nets and hooks. Rev. Fish Biol. Fish. 9:89-116.
    • (1999) Rev. Fish Biol. Fish , vol.9 , pp. 89-116
    • Millar, R.B.1    Fryer, R.J.2
  • 22
    • 0040005168 scopus 로고
    • A consistent and asymptotically efficient two-stage procedure to construct fixed-width confidence interval for the mean
    • Mukhopadhyay, N. (1980). A consistent and asymptotically efficient two-stage procedure to construct fixed-width confidence interval for the mean. Metrika 27:281-284.
    • (1980) Metrika , vol.27 , pp. 281-284
    • Mukhopadhyay, N.1
  • 23
    • 35649004035 scopus 로고
    • A note on estimating the range of a uniform distribution
    • Mukhopadhyay, N. (1987). A note on estimating the range of a uniform distribution. S. Afr. Stat. J. 21:27-38.
    • (1987) S. Afr. Stat. J. , vol.21 , pp. 27-38
    • Mukhopadhyay, N.1
  • 24
    • 77951991256 scopus 로고    scopus 로고
    • Large second-order properties of a two-stage point estimation procedure for the range in a power family distribution
    • Mukhopadhyay, N., Cicconetti, G. (2002). Large second-order properties of a two-stage point estimation procedure for the range in a power family distribution. Calcutta Statistical Association Bulletin 52:205-208.
    • (2002) Calcutta Statistical Association Bulletin , vol.52 , pp. 205-208
    • Mukhopadhyay, N.1    Cicconetti, G.2
  • 25
    • 0042192399 scopus 로고
    • Sequential and two-stage point estimation for the range in a power family distribution
    • Mukhopadhyay, N., Ghosh, M., Hamdy, H. I., Wackerly, D. D. (1983). Sequential and two-stage point estimation for the range in a power family distribution. Sequential Analysis 2:259-288.
    • (1983) Sequential Analysis , vol.2 , pp. 259-288
    • Mukhopadhyay, N.1    Ghosh, M.2    Hamdy, H.I.3    Wackerly, D.D.4
  • 26
    • 0010871751 scopus 로고
    • Moment inequalities for the maximum cumulative sum
    • Serfling, R. J. (1970). Moment inequalities for the maximum cumulative sum. Ann. Math. Stat. 41:1227-1234.
    • (1970) Ann. Math. Stat , vol.41 , pp. 1227-1234
    • Serfling, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.