-
2
-
-
84932209868
-
Asymptotic theory for estimation of location in non-regular cases, II: Bounds of asymptotic distributions of consistent estimators
-
Akahira, M. (1975b). Asymptotic theory for estimation of location in non-regular cases, II: Bounds of asymptotic distributions of consistent estimators. Reports of Statistical Application Research, Union of Japanese Scientists and Engineers 22:99-115.
-
(1975)
Reports of Statistical Application Research, Union of Japanese Scientists and Engineers
, vol.22
, pp. 99-115
-
-
Akahira, M.1
-
3
-
-
34248188393
-
Sequential interval estimation of a location parameter with the fixed width in the uniform distribution with an unknown scale parameter
-
Akahira, M., Koike, K. (2005). Sequential interval estimation of a location parameter with the fixed width in the uniform distribution with an unknown scale parameter. Sequential Analysis 24:63-75.
-
(2005)
Sequential Analysis
, vol.24
, pp. 63-75
-
-
Akahira, M.1
Koike, K.2
-
6
-
-
35648988164
-
The information inequality in sequential estimation for the uniform case
-
Akahira, M., Takeuchi, K. (2003). The information inequality in sequential estimation for the uniform case. Sequential Analysis 22:223-232.
-
(2003)
Sequential Analysis
, vol.22
, pp. 223-232
-
-
Akahira, M.1
Takeuchi, K.2
-
7
-
-
84959600617
-
Large sample theory of sequential estimation
-
Anscombe, F. J. (1952). Large sample theory of sequential estimation. Proc. Camb. Phil. Soc. 48:600-607.
-
(1952)
Proc. Camb. Phil. Soc.
, vol.48
, pp. 600-607
-
-
Anscombe, F.J.1
-
8
-
-
35649008016
-
Multi-stage estimation procedures for the "range" of two-parameter uniform distribution
-
Chaturvedi, A., Surinder, K., Sanjeev, K. (2001). Multi-stage estimation procedures for the "range" of two-parameter uniform distribution. Metron 59:179-186.
-
(2001)
Metron
, vol.59
, pp. 179-186
-
-
Chaturvedi, A.1
Surinder, K.2
Sanjeev, K.3
-
9
-
-
0001336620
-
On the asymptotic theory of fixed-width sequential confidence intervals for the mean
-
Chow, Y. S., Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Stat. 36:457-462.
-
(1965)
Ann. Math. Stat
, vol.36
, pp. 457-462
-
-
Chow, Y.S.1
Robbins, H.2
-
10
-
-
77951988529
-
Sequential estimation in the uniform density
-
Cooke, P. J. (1971). Sequential estimation in the uniform density. J. Am. Stat. Assoc. 66:614-617.
-
(1971)
J. Am. Stat. Assoc.
, vol.66
, pp. 614-617
-
-
Cooke, P.J.1
-
11
-
-
0001291258
-
Consistency and asymptotic efficiency of two stage and sequential estimation procedures
-
Ghosh, M., Mukhopadhyay, N. (1981). Consistency and asymptotic efficiency of two stage and sequential estimation procedures. Sankhyā 43:220-227.
-
(1981)
Sankhya
, vol.43
, pp. 220-227
-
-
Ghosh, M.1
Mukhopadhyay, N.2
-
13
-
-
17844408807
-
A note on two-stage and sequential fixed-width intervals for the parameter in the uniform density
-
Govindarajulu, Z. (1997). A note on two-stage and sequential fixed-width intervals for the parameter in the uniform density. Stat. Probab. Lett. 36:179-188.
-
(1997)
Stat. Probab. Lett.
, vol.36
, pp. 179-188
-
-
Govindarajulu, Z.1
-
14
-
-
77951982999
-
Erratum
-
Erratum: Stat. Probab. Lett. 42:213-215.
-
Stat. Probab. Lett.
, vol.42
, pp. 213-215
-
-
-
15
-
-
84891475733
-
Sample size required to estimate the parameter in the uniform density within d units of the true value
-
Graybill, F. A., Connell, T. L. (1964). Sample size required to estimate the parameter in the uniform density within d units of the true value. J. Am. Stat. Assoc. 59:550-560.
-
(1964)
J. Am. Stat. Assoc.
, vol.59
, pp. 550-560
-
-
Graybill, F.A.1
Connell, T.L.2
-
17
-
-
34248161562
-
Sequential interval estimation of a location parameter with the fixed width in the non-regular case
-
Koike, K. (2007a). Sequential interval estimation of a location parameter with the fixed width in the non-regular case. Sequential Analysis 26:63-70.
-
(2007)
Sequential Analysis
, vol.26
, pp. 63-70
-
-
Koike, K.1
-
18
-
-
35649007858
-
Sequential point estimation of location parameter in location-scale family of non-regular distributions
-
Koike, K. (2007b). Sequential point estimation of location parameter in location-scale family of non-regular distributions. Sequential Analysis 26:383-393.
-
(2007)
Sequential Analysis
, vol.26
, pp. 383-393
-
-
Koike, K.1
-
19
-
-
0001552433
-
On uniform integrability and asymptotically risk-efficient sequential estimation
-
Lai, T. L. (1996). On uniform integrability and asymptotically risk-efficient sequential estimation. Sequential Analysis 15:237-251.
-
(1996)
Sequential Analysis
, vol.15
, pp. 237-251
-
-
Lai, T.L.1
-
20
-
-
21144472546
-
Estimating the size-selectivity of fishing gear by conditioning on the total catch
-
Millar, R. B. (1992). Estimating the size-selectivity of fishing gear by conditioning on the total catch. J. Am. Stat. Assoc. 87:962-968.
-
(1992)
J. Am. Stat. Assoc.
, vol.87
, pp. 962-968
-
-
Millar, R.B.1
-
21
-
-
0033427211
-
Estimating the size-selection curves of towed gears, traps, nets and hooks
-
Millar, R. B., Fryer, R. J. (1999). Estimating the size-selection curves of towed gears, traps, nets and hooks. Rev. Fish Biol. Fish. 9:89-116.
-
(1999)
Rev. Fish Biol. Fish
, vol.9
, pp. 89-116
-
-
Millar, R.B.1
Fryer, R.J.2
-
22
-
-
0040005168
-
A consistent and asymptotically efficient two-stage procedure to construct fixed-width confidence interval for the mean
-
Mukhopadhyay, N. (1980). A consistent and asymptotically efficient two-stage procedure to construct fixed-width confidence interval for the mean. Metrika 27:281-284.
-
(1980)
Metrika
, vol.27
, pp. 281-284
-
-
Mukhopadhyay, N.1
-
23
-
-
35649004035
-
A note on estimating the range of a uniform distribution
-
Mukhopadhyay, N. (1987). A note on estimating the range of a uniform distribution. S. Afr. Stat. J. 21:27-38.
-
(1987)
S. Afr. Stat. J.
, vol.21
, pp. 27-38
-
-
Mukhopadhyay, N.1
-
24
-
-
77951991256
-
Large second-order properties of a two-stage point estimation procedure for the range in a power family distribution
-
Mukhopadhyay, N., Cicconetti, G. (2002). Large second-order properties of a two-stage point estimation procedure for the range in a power family distribution. Calcutta Statistical Association Bulletin 52:205-208.
-
(2002)
Calcutta Statistical Association Bulletin
, vol.52
, pp. 205-208
-
-
Mukhopadhyay, N.1
Cicconetti, G.2
-
25
-
-
0042192399
-
Sequential and two-stage point estimation for the range in a power family distribution
-
Mukhopadhyay, N., Ghosh, M., Hamdy, H. I., Wackerly, D. D. (1983). Sequential and two-stage point estimation for the range in a power family distribution. Sequential Analysis 2:259-288.
-
(1983)
Sequential Analysis
, vol.2
, pp. 259-288
-
-
Mukhopadhyay, N.1
Ghosh, M.2
Hamdy, H.I.3
Wackerly, D.D.4
-
26
-
-
0010871751
-
Moment inequalities for the maximum cumulative sum
-
Serfling, R. J. (1970). Moment inequalities for the maximum cumulative sum. Ann. Math. Stat. 41:1227-1234.
-
(1970)
Ann. Math. Stat
, vol.41
, pp. 1227-1234
-
-
Serfling, R.J.1
|