메뉴 건너뛰기




Volumn 26, Issue 4, 2007, Pages 383-393

Sequential point estimation of the location parameter in the location-scale family of non-regular distributions

Author keywords

Extreme value; Non regular case; Robbin' procedure; Sequential point estimation

Indexed keywords

ASYMPTOTICALLY EFFICIENT; EXTREME VALUE; LOCATION-SCALE FAMILIES; POINT ESTIMATION; ROBBIN' PROCEDURE; SEQUENTIAL INTERVAL ESTIMATION; SEQUENTIAL PROCEDURES; UNDERLYING DISTRIBUTION;

EID: 35649007858     PISSN: 07474946     EISSN: 15324176     Source Type: Journal    
DOI: 10.1080/07474940701620832     Document Type: Conference Paper
Times cited : (3)

References (21)
  • 1
    • 0042894111 scopus 로고
    • Asymptotic Theory for Estimation of Location in Non-regular Cases, I: Order of Convergence of Consistent Estimators,
    • Union of Japanese Scientists and Engineers 22: 8-26
    • Akahira, M. (1975a). Asymptotic Theory for Estimation of Location in Non-regular Cases, I: Order of Convergence of Consistent Estimators, Reports of Statistical Application Research, Union of Japanese Scientists and Engineers 22: 8-26.
    • (1975) Reports of Statistical Application Research
    • Akahira, M.1
  • 2
    • 84876649190 scopus 로고    scopus 로고
    • Akahira, M. (1975b). Asymptotic Theory for Estimation of Location in Non-Regular Cases, II: Bounds of Asymptotic Distributions of Consistent Estimators, Reports of Statistical Application Research, Union of Japanese Scientists and Engineers 22: 99-115.
    • Akahira, M. (1975b). Asymptotic Theory for Estimation of Location in Non-Regular Cases, II: Bounds of Asymptotic Distributions of Consistent Estimators, Reports of Statistical Application Research, Union of Japanese Scientists and Engineers 22: 99-115.
  • 3
    • 34248188393 scopus 로고    scopus 로고
    • Sequential Interval Estimation of a Location Parameter with the Fixed Width in the Uniform Distribution with an Unknown Scale Parameter
    • Akahira, M. and Koike, K. (2005). Sequential Interval Estimation of a Location Parameter with the Fixed Width in the Uniform Distribution with an Unknown Scale Parameter, Sequential Analysis 24: 63-75.
    • (2005) Sequential Analysis , vol.24 , pp. 63-75
    • Akahira, M.1    Koike, K.2
  • 4
    • 0003289825 scopus 로고
    • Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency
    • New York: Springer
    • Akahira, M. and Takeuchi, K. (1981). Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency, Lecture Notes in Statistics 7, New York: Springer.
    • (1981) Lecture Notes in Statistics , vol.7
    • Akahira, M.1    Takeuchi, K.2
  • 5
    • 0012471495 scopus 로고
    • Non-Regular Statistical Estimation
    • New York: Springer
    • Akahira, M. and Takeuchi, K. (1995). Non-Regular Statistical Estimation, Lecture Notes in Statistics 107, New York: Springer.
    • (1995) Lecture Notes in Statistics , vol.107
    • Akahira, M.1    Takeuchi, K.2
  • 6
    • 35648988164 scopus 로고    scopus 로고
    • The Information Inequality in Sequential Estimation for the Uniform Case
    • Akahira, M. and Takeuchi, K. (2003). The Information Inequality in Sequential Estimation for the Uniform Case, Sequential Analysis 22: 223-232.
    • (2003) Sequential Analysis , vol.22 , pp. 223-232
    • Akahira, M.1    Takeuchi, K.2
  • 7
    • 38249019925 scopus 로고
    • Sequential Estimation for Dependent Observations with an Application to Non-Standard Autoregressive Processes
    • Basawa, I. V., McCormick, W. P., and Sriram, T. N. (1990). Sequential Estimation for Dependent Observations with an Application to Non-Standard Autoregressive Processes, Stochastic Processes and Their Applications 35: 149-168.
    • (1990) Stochastic Processes and Their Applications , vol.35 , pp. 149-168
    • Basawa, I.V.1    McCormick, W.P.2    Sriram, T.N.3
  • 8
    • 35649008016 scopus 로고    scopus 로고
    • Multi-Stage Estimation Procedures for the "Range" of Two-Parameter Uniform Distribution
    • Chaturvedi, A., Surinder, K., and Sanjeev, K. (2001). Multi-Stage Estimation Procedures for the "Range" of Two-Parameter Uniform Distribution, Metron 59: 179-186.
    • (2001) Metron , vol.59 , pp. 179-186
    • Chaturvedi, A.1    Surinder, K.2    Sanjeev, K.3
  • 9
    • 0000464632 scopus 로고
    • Bounded Regret of a Sequential Procedure for Estimation of the Mean
    • Chow, Y. S. and Martinsek, A. T. (1982). Bounded Regret of a Sequential Procedure for Estimation of the Mean, Annals of Statistics 10: 909-914.
    • (1982) Annals of Statistics , vol.10 , pp. 909-914
    • Chow, Y.S.1    Martinsek, A.T.2
  • 10
    • 0001228009 scopus 로고
    • On the Performance of Sequential Procedure for the Estimation of the Mean
    • Chow, Y. S. and Yu, K. F. (1981). On the Performance of Sequential Procedure for the Estimation of the Mean, Annals of Statistics 9: 184-189.
    • (1981) Annals of Statistics , vol.9 , pp. 184-189
    • Chow, Y.S.1    Yu, K.F.2
  • 11
    • 0000999590 scopus 로고
    • Sequential Point Estimation of the Mean when the Distribution is Unspecified
    • Ghosh, M. and Mukhopadhyay, N. (1979). Sequential Point Estimation of the Mean when the Distribution is Unspecified, Communications in Statistics-Theory & Methods 8: 637-652.
    • (1979) Communications in Statistics-Theory & Methods , vol.8 , pp. 637-652
    • Ghosh, M.1    Mukhopadhyay, N.2
  • 13
    • 17844408807 scopus 로고    scopus 로고
    • A Note on Two-Stage and Sequential Fixed-Width Intervals for the Parameter in the Uniform Density
    • Govindarajulu, Z. (1997). A Note on Two-Stage and Sequential Fixed-Width Intervals for the Parameter in the Uniform Density, Statistics & Probability Letters 36: 179-188.
    • (1997) Statistics & Probability Letters , vol.36 , pp. 179-188
    • Govindarajulu, Z.1
  • 14
    • 84876643890 scopus 로고    scopus 로고
    • Erratum, Statistics & Probability Letters 42(1999): 213-215.
    • Erratum, Statistics & Probability Letters 42(1999): 213-215.
  • 15
    • 34248161562 scopus 로고    scopus 로고
    • Sequential Interval Estimation of a Location Parameter with the Fixed Width in the Non-Regular Case
    • Koike, K. (2007). Sequential Interval Estimation of a Location Parameter with the Fixed Width in the Non-Regular Case, Sequential Analysis 26: 63-70.
    • (2007) Sequential Analysis , vol.26 , pp. 63-70
    • Koike, K.1
  • 16
    • 0001552433 scopus 로고    scopus 로고
    • On Uniform Integrability and Asymptotically Risk-Efficient Sequential Estimation
    • Lai, T. L. (1996). On Uniform Integrability and Asymptotically Risk-Efficient Sequential Estimation, Sequential Analysis 15: 237-251.
    • (1996) Sequential Analysis , vol.15 , pp. 237-251
    • Lai, T.L.1
  • 17
    • 35649004035 scopus 로고
    • A Note on Estimating the Range of a Uniform Distribution
    • Mukhopadhyay, N. (1987). A Note on Estimating the Range of a Uniform Distribution, South African Statistical Journal 21: 27-38.
    • (1987) South African Statistical Journal , vol.21 , pp. 27-38
    • Mukhopadhyay, N.1
  • 18
    • 0042192399 scopus 로고
    • Sequential and Two-Stage Point Estimation for the Range in a Power Family Distribution
    • Mukhopadhyay, N., Hamdy, H. I., Ghosh, M., and Wackerly, D. D. (1983). Sequential and Two-Stage Point Estimation for the Range in a Power Family Distribution, Sequential Analysis 2: 259-288.
    • (1983) Sequential Analysis , vol.2 , pp. 259-288
    • Mukhopadhyay, N.1    Hamdy, H.I.2    Ghosh, M.3    Wackerly, D.D.4
  • 19
    • 0002403662 scopus 로고
    • Sequential Estimation of the Mean of a Normal Population
    • U. Grenander, ed, pp, Stockholm: Almquist and Wiksell
    • Robbins, H. (1959). Sequential Estimation of the Mean of a Normal Population, in Probability and Statistics (Harold Cramér Volume), U. Grenander, ed., pp. 235-245, Stockholm: Almquist and Wiksell.
    • (1959) Probability and Statistics (Harold Cramér Volume) , pp. 235-245
    • Robbins, H.1
  • 20
    • 0010871751 scopus 로고
    • Moment Inequalities for the Maximum Cumulative Sum
    • Serfling, R. J. (1970). Moment Inequalities for the Maximum Cumulative Sum, Annals of Mathematical Statistics 41: 1227-1234.
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 1227-1234
    • Serfling, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.