메뉴 건너뛰기




Volumn 22, Issue 3, 2010, Pages 752-792

A moving bump in a continuous manifold: A comprehensive study of the tracking dynamics of continuous attractor neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER SIMULATION; MOVEMENT PERCEPTION; NORMAL DISTRIBUTION; REACTION TIME;

EID: 77951948643     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.07-08-824     Document Type: Article
Times cited : (74)

References (47)
  • 1
    • 0017713690 scopus 로고
    • Dynamics of pattern formation in lateral-inhibition type neural fields
    • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77-87.
    • (1977) Biological Cybernetics , vol.27 , pp. 77-87
    • Amari, S.1
  • 3
    • 0033602375 scopus 로고    scopus 로고
    • Anticipation of moving stimuli by the retina
    • Berry II, M., Brivanlou, I., Jordon, T., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature, 398, 334-338.
    • (1999) Nature , vol.398 , pp. 334-338
    • Berry, I.I.M.1    Brivanlou, I.2    Jordon, T.3    Meister, M.4
  • 4
    • 0038734257 scopus 로고    scopus 로고
    • Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations
    • Brody, C.D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13, 204-211.
    • (2003) Current Opinion in Neurobiology , vol.13 , pp. 204-211
    • Brody, C.D.1    Romo, R.2    Kepecs, A.3
  • 5
    • 0031762840 scopus 로고    scopus 로고
    • A model of visuospatial short-term memory in prefrontal cortex: Recurrent network and cellular bistability
    • Camperi, M., & Wang, X.-J. (1998). A model of visuospatial short-term memory in prefrontal cortex: Recurrent network and cellular bistability. J. Comput. Neurosci., 5, 383-405.
    • (1998) J. Comput. Neurosci. , vol.5 , pp. 383-405
    • Camperi, M.1    Wang, X.J.2
  • 6
    • 85065118007 scopus 로고    scopus 로고
    • Existence and wandering of bumps in a spiking neural network model
    • Chow, C., & Coombes, S. (2006). Existence and wandering of bumps in a spiking neural network model. SIAM Journal of Applied Dynamical Systems, 5, 552-574.
    • (2006) SIAM Journal of Applied Dynamical Systems , vol.5 , pp. 552-574
    • Chow, C.1    Coombes, S.2
  • 8
    • 0033360244 scopus 로고    scopus 로고
    • Reading population codes: A neural implementation of ideal observers
    • Deneve, S., Latham, P.E., & Pouget, A. (1999). Reading population codes: A neural implementation of ideal observers. Nature Neuroscience, 2, 740-745.
    • (1999) Nature Neuroscience , vol.2 , pp. 740-745
    • Deneve, S.1    Latham, P.E.2    Pouget, A.3
  • 10
    • 0142039671 scopus 로고    scopus 로고
    • Internalmodels for visual perception
    • Erlhagen, W. (2003). Internalmodels for visual perception. Biol. Cybern., 88, 409-417.
    • (2003) Biol. Cybern. , vol.88 , pp. 409-417
    • Erlhagen, W.1
  • 11
    • 0001104658 scopus 로고    scopus 로고
    • Neural networks as spatial-temporal pattern-forming systems
    • Ermentrout, B. (1998). Neural networks as spatial-temporal pattern-forming systems. Reports on Progress in Physics, 61, 353-430.
    • (1998) Reports on Progress in Physics , vol.61 , pp. 353-430
    • Ermentrout, B.1
  • 12
    • 16344393249 scopus 로고    scopus 로고
    • Breathing pulses in an excitatory neural network
    • Folias, E., & Bressloff, P. (2004). Breathing pulses in an excitatory neural network. SIAM J. Appl. Dyn. Syst., 3, 378-407.
    • (2004) SIAM J. Appl. Dyn. Syst. , vol.3 , pp. 378-407
    • Folias, E.1    Bressloff, P.2
  • 13
    • 56349129825 scopus 로고    scopus 로고
    • Motion-induced perceptual extrapolation of blurred visual targets
    • Fu, Y., Shen, Y., &Dan, Y. (2001). Motion-induced perceptual extrapolation of blurred visual targets. J. Neuroscience, 21, 1-5.
    • (2001) J. Neuroscience , vol.21 , pp. 1-5
    • Fu, Y.1    Shen, Y.2    Dan, Y.3
  • 14
    • 0024574176 scopus 로고
    • Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex
    • Funahashi, S., Bruce, C., & Goldman-Rakic, P. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiology, 61, 331-349.
    • (1989) J. Neurophysiology , vol.61 , pp. 331-349
    • Funahashi, S.1    Bruce, C.2    Goldman-Rakic, P.3
  • 15
    • 79051471362 scopus 로고    scopus 로고
    • Dynamics of neural networks with continuous attractors
    • Fung, C.C.A., Wong, K.Y.M., & Wu, S. (2008). Dynamics of neural networks with continuous attractors. Europhys. Lett., 84, 18002.
    • (2008) Europhys. Lett. , vol.84 , pp. 18002
    • Fung, C.C.A.1    Wong, K.Y.M.2    Wu, S.3
  • 16
    • 0020401276 scopus 로고
    • On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex
    • Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., &Massey, J.T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci., 2, 1527-1537.
    • (1982) J. Neurosci. , vol.2 , pp. 1527-1537
    • Georgopoulos, A.P.1    Kalaska, J.F.2    Caminiti, R.3    Massey, J.T.4
  • 17
    • 0027905012 scopus 로고
    • Cognitive neurophysiology of the motor cortex
    • Georgopoulos, A.P., Taira, M., & Lukashin, A. (1993). Cognitive neurophysiology of the motor cortex. Science, 260, 47-52.
    • (1993) Science , vol.260 , pp. 47-52
    • Georgopoulos, A.P.1    Taira, M.2    Lukashin, A.3
  • 20
    • 40649128119 scopus 로고
    • Nonlinear neural networks: Principles, mechanisms and architectures
    • Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms and architectures. Neural Network, 1, 17-66.
    • (1988) Neural Network , vol.1 , pp. 17-66
    • Grossberg, S.1
  • 21
    • 0842346369 scopus 로고    scopus 로고
    • Mathematical neuroscience: From neurons to circuits to system
    • Gutkin, B.S., Pinto, D., & Ermentrout, B. (2003). Mathematical neuroscience: From neurons to circuits to system. J. Physiol. Paris, 97, 209-219.
    • (2003) J. Physiol. Paris , vol.97 , pp. 209-219
    • Gutkin, B.S.1    Pinto, D.2    Ermentrout, B.3
  • 22
    • 0002433285 scopus 로고    scopus 로고
    • C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks. Cambridge, MA: MIT Press
    • Hansel, D., & Sompolinsky, H. (1998). Modeling feature selectivity in local cortical circuits. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks. Cambridge, MA: MIT Press.
    • (1998) Modeling feature selectivity in local cortical circuits
    • Hansel, D.1    Sompolinsky, H.2
  • 23
    • 0027494491 scopus 로고
    • Modeling simple-cell direction selectivity with normalized, halfsquared, linear operators
    • Heeger, D. (1993). Modeling simple-cell direction selectivity with normalized, halfsquared, linear operators. J. Neurophysiology, 70, 1885-1898.
    • (1993) J. Neurophysiology , vol.70 , pp. 1885-1898
    • Heeger, D.1
  • 24
    • 0004469897 scopus 로고
    • Neurons with graded responses have collective computational properties like those of two-state neurons
    • Hopfield, J.J. (1984). Neurons with graded responses have collective computational properties like those of two-state neurons. Proc.Natl. Acad. Sci.USA81, 3088-3092.
    • (1984) Proc. Natl. Acad. Sci. USA 81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 25
    • 33746107947 scopus 로고    scopus 로고
    • Learning to discriminate complex movements: Biological versus artificial trajectories
    • Jastorff, J., Kourtzi, Z., & Giese, M. (2006). Learning to discriminate complex movements: Biological versus artificial trajectories. J. Vision, 6, 791-804.
    • (2006) J. Vision , vol.6 , pp. 791-804
    • Jastorff, J.1    Kourtzi, Z.2    Giese, M.3
  • 26
    • 0035403248 scopus 로고    scopus 로고
    • Stationary bumps in networks of spiking neurons
    • Laing, C.R., & Chow, C. (2001). Stationary bumps in networks of spiking neurons. Neural Computation, 13, 1473-1494.
    • (2001) Neural Computation , vol.13 , pp. 1473-1494
    • Laing, C.R.1    Chow, C.2
  • 28
    • 38649118901 scopus 로고    scopus 로고
    • Design of continuous attractor networks with monotonic tuning using a symmetry principle
    • Machens, C., & Brody, C. (2008). Design of continuous attractor networks with monotonic tuning using a symmetry principle. Neural Computation, 20, 452-485.
    • (2008) Neural Computation , vol.20 , pp. 452-485
    • Machens, C.1    Brody, C.2
  • 29
    • 0020541361 scopus 로고
    • Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation
    • Maunsell, J.H.R., & Van Essen, D.C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiology, 49, 1127-1147.
    • (1983) J. Neurophysiology , vol.49 , pp. 1127-1147
    • Maunsell, J.H.R.1    Van Essen, D.C.2
  • 30
    • 33646812246 scopus 로고    scopus 로고
    • Analysis of spike statistics in neuronal systems with continuous attractors ormultiple, discrete attractor states
    • Miller, P. (2006). Analysis of spike statistics in neuronal systems with continuous attractors ormultiple, discrete attractor states. Neural Computation, 18, 1268-1317.
    • (2006) Neural Computation , vol.18 , pp. 1268-1317
    • Miller, P.1
  • 31
    • 0037566546 scopus 로고    scopus 로고
    • Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks
    • Renart, A., Song, P., & Wang, X. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron, 38, 473-485.
    • (2003) Neuron , vol.38 , pp. 473-485
    • Renart, A.1    Song, P.2    Wang, X.3
  • 33
    • 0030877821 scopus 로고    scopus 로고
    • Path integration and cognitive mappping in a continuous attractor neural network model
    • Samsonovich, A., &McNaughton, B.L. (1997). Path integration and cognitive mappping in a continuous attractor neural network model. J. Neurosci., 7, 5900-5920.
    • (1997) J. Neurosci. , vol.7 , pp. 5900-5920
    • Samsonovich, A.1    McNaughton, B.L.2
  • 34
    • 0029800695 scopus 로고    scopus 로고
    • How the brain keeps the eyes still
    • Seung, H.S. (1996). How the brain keeps the eyes still. Proc. Acad. Sci. USA, 93, 13339-13344.
    • (1996) Proc. Acad. Sci. USA , vol.93 , pp. 13339-13344
    • Seung, H.S.1
  • 35
    • 0009521938 scopus 로고    scopus 로고
    • Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells
    • Stringer, S.M., Trappenberg, T.P., Rolls, E., & Aranjo, I. (2002). Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells. Network: Computation in Neural Systems, 13, 217-242.
    • (2002) Network: Computation in Neural Systems , vol.13 , pp. 217-242
    • Stringer, S.M.1    Trappenberg, T.P.2    Rolls, E.3    Aranjo, I.4
  • 36
    • 0031844732 scopus 로고    scopus 로고
    • Head direction cells and the neurophysiological basis for a sense of direction
    • Taube, J.S. (1998). Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol., 55, 225-256.
    • (1998) Prog. Neurobiol. , vol.55 , pp. 225-256
    • Taube, J.S.1
  • 37
    • 77953340937 scopus 로고    scopus 로고
    • L. N. de Castro & F. J. V. Zuben (Eds.), Recent developments in biologically inspired computing.Hershey, PA: Idea Group
    • Trappenberg, T. (2003). Continuous attractor neural networks. In L. N. de Castro & F.J.V. Zuben (Eds.), Recent developments in biologically inspired computing.Hershey, PA: Idea Group.
    • (2003) Continuous attractor neural networks
    • Trappenberg, T.1
  • 39
    • 0035426435 scopus 로고    scopus 로고
    • Synaptic reverberation underlying mnemonic persistent activity
    • Wang, X.J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neuroscience, 24, 455-463.
    • (2001) Trends in Neuroscience , vol.24 , pp. 455-463
    • Wang, X.J.1
  • 40
    • 0036673247 scopus 로고    scopus 로고
    • Dynamic approximation of spatio-temporal receptive fields in nonlinear neural field models
    • Wennekers, T. (2002). Dynamic approximation of spatio-temporal receptive fields in nonlinear neural field models. Neural Computation, 14, 1801-1825.
    • (2002) Neural Computation , vol.14 , pp. 1801-1825
    • Wennekers, T.1
  • 41
    • 0015260274 scopus 로고
    • Excitatory and inhibitory interactions in localized populations of model neurons
    • Wilson, H., & Cowan, J. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1-24.
    • (1972) Biophysical Journal , vol.12 , pp. 1-24
    • Wilson, H.1    Cowan, J.2
  • 42
    • 0027440875 scopus 로고
    • Dynamics of hippocampal ensemble code for space
    • Wilson, M.A., & McNaughton, B.L. (1993). Dynamics of hippocampal ensemble code for space. Science, 261, 1055-1058.
    • (1993) Science , vol.261 , pp. 1055-1058
    • Wilson, M.A.1    McNaughton, B.L.2
  • 43
    • 23944471214 scopus 로고    scopus 로고
    • Computing with continuous attractors: Stability and on-line aspects
    • Wu, S., & Amari, S. (2005). Computing with continuous attractors: Stability and on-line aspects. Neural Computation, 17, 2215-2239.
    • (2005) Neural Computation , vol.17 , pp. 2215-2239
    • Wu, S.1    Amari, S.2
  • 44
    • 0036583146 scopus 로고    scopus 로고
    • Population coding and decoding in a neural field: A computational study
    • Wu, S., Amari, S., & Nakahara, H. (2002). Population coding and decoding in a neural field: A computational study. Neural Computation, 14, 999-1026.
    • (2002) Neural Computation , vol.14 , pp. 999-1026
    • Wu, S.1    Amari, S.2    Nakahara, H.3
  • 45
    • 41849116365 scopus 로고    scopus 로고
    • Dynamics and computation of continuous attractors
    • Wu, S., Hamaguchi, K., &Amari, S. (2008). Dynamics and computation of continuous attractors. Neural Computation, 20, 994-1025.
    • (2008) Neural Computation , vol.20 , pp. 994-1025
    • Wu, S.1    Hamaguchi, K.2    Amari, S.3
  • 46
    • 85036196570 scopus 로고    scopus 로고
    • Double-ring network model of the headdirection system
    • Xie, X., Hahnloser, R., & Seung, S. (2002). Double-ring network model of the headdirection system. Physical Review E, 66, 041902.
    • (2002) Physical Review E , vol.66 , pp. 041902
    • Xie, X.1    Hahnloser, R.2    Seung, S.3
  • 47
    • 0029961607 scopus 로고    scopus 로고
    • Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory
    • Zhang, K.-C. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. J. Neuroscience, 16, 2112-2126.
    • (1996) J. Neuroscience , vol.16 , pp. 2112-2126
    • Zhang, K.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.