메뉴 건너뛰기




Volumn 14, Issue 9, 2010, Pages 921-929

Quantum clustering-based weighted linear programming support vector regression for multivariable nonlinear problem

Author keywords

Linear programming support vector regression; Quantum clustering; Variable selection; Weighted strategy

Indexed keywords

DATA POINTS; DATA SETS; EVALUATION CRITERIA; GENERALIZATION PERFORMANCE; IMPROVED RELIABILITY; INERTIA WEIGHT; LINEAR PROGRAMMING SUPPORT VECTOR REGRESSION; MEAN SQUARED ERROR; MULTI VARIABLES; NONLINEAR PROBLEMS; NONLINEAR REGRESSION PROBLEMS; PREDICTION ERRORS; PREDICTION PRECISION; QUANTUM CLUSTERING; REGRESSION MODEL; SPARSE SOLUTIONS; SUPPORT VECTOR; SUPPORT VECTOR REGRESSIONS; TEST SETS; TRAINING ERRORS; VARIABLE SELECTION;

EID: 77951879968     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-009-0478-1     Document Type: Article
Times cited : (10)

References (32)
  • 1
    • 56549113284 scopus 로고    scopus 로고
    • UCI machine learning repository
    • University of California, Irvine Accessed 6 Mar 2007
    • Asuncion A, Newman DJ (2007) UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine. http://mlearn. ics. uci. edu/MLRepository. html. Accessed 6 Mar 2007
    • (2007) School of Information and Computer Sciences
    • Asuncion, A.1    Newman, D.J.2
  • 4
    • 0242288799 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA, and ICA for dimensionality reduction in support vector machine
    • Cao LJ, Chua KS, Chong WK et al (2003) A comparison of PCA, KPCA, and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1-2): 321-336.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3
  • 5
    • 34047138318 scopus 로고    scopus 로고
    • Combining SVMs with various feature selection strategies
    • I. Guyon, S. Gunn, and M. Nikravesh et al (Eds.), Berlin: Springer
    • Chen YW, Lin CJ (2006) Combining SVMs with various feature selection strategies. In: Guyon I, Gunn S, Nikravesh M et al (ed) Feature extraction: foundations and applications. Springer, Berlin, pp 315-324.
    • (2006) Feature Extraction: Foundations and Applications , pp. 315-324
    • Chen, Y.W.1    Lin, C.J.2
  • 6
    • 20444409097 scopus 로고    scopus 로고
    • A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm
    • Corsini P, Lazzerini B, Marcelloni F (2005) A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm. Soft Comput 9(6): 439-447.
    • (2005) Soft Comput , vol.9 , Issue.6 , pp. 439-447
    • Corsini, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 9
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dy JG, Brodley CE (2004) Feature selection for unsupervised learning. J Mach Learn Res 5: 845-889.
    • (2004) J Mach Learn Res , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 10
    • 1042275194 scopus 로고    scopus 로고
    • A survey of dimension reduction techniques
    • 148494
    • Fodor IK (2002) A survey of dimension reduction techniques. Technical Report UCRL-ID-148494.
    • (2002) Technical Report UCRL-ID
    • Fodor, I.K.1
  • 12
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 14
    • 0037033417 scopus 로고    scopus 로고
    • Algorithm for data clustering in pattern recognition problems based on quantum mechanics
    • Horn D, Gottlieb A (2002) Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys Rev Lett 88(1): 018702.
    • (2002) Phys Rev Lett , vol.88 , Issue.1 , pp. 018702
    • Horn, D.1    Gottlieb, A.2
  • 15
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4-5): 411-430.
    • (2000) Neural Netw , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 17
    • 0036161035 scopus 로고    scopus 로고
    • Large scale kernel regression via linear programming
    • Mangasarian OL, David R (2002) Large scale kernel regression via linear programming. Mach Learn 46(1-3): 255-269.
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 255-269
    • Mangasarian, O.L.1    David, R.2
  • 21
    • 50249155939 scopus 로고    scopus 로고
    • Shrinking the tube: A new support vector regression algorithm
    • Schölkopf B, Bartlett P, Smola A et al (1998) Shrinking the tube: a new support vector regression algorithm. Adv Neural Inf Process Syst 11: 330-336.
    • (1998) Adv Neural Inf Process Syst , vol.11 , pp. 330-336
    • Schölkopf, B.1    Bartlett, P.2    Smola, A.3
  • 22
    • 0002570938 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • B. Schölkopf, C. Burges, and A. Smola (Eds.), Cambridge: MIT Press
    • Schölkopf B, Smola A, Müller K (1999) Kernel principal component analysis. In: Schölkopf B, Burges C, Smola A (ed) Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 327-352.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 327-352
    • Schölkopf, B.1    Smola, A.2    Müller, K.3
  • 23
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3): 199-222.
    • (2004) Stat Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 25
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens JAK, De Brabanter J, Lukas L et al (2000) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1-4): 85-105.
    • (2000) Neurocomputing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.A.K.1    de Brabanter, J.2    Lukas, L.3
  • 26
    • 0037360871 scopus 로고    scopus 로고
    • A support vector machine formulation to PCA analysis and its kernel version
    • Suykens JAK, Gestel TV, Vandewalle J et al (2003) A support vector machine formulation to PCA analysis and its kernel version. IEEE Trans Neural Netw 14(2): 447-450.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.2 , pp. 447-450
    • Suykens, J.A.K.1    Gestel, T.V.2    Vandewalle, J.3
  • 29
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik V, Golowich S, Smola A (1996) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9: 281-287.
    • (1996) Adv Neural Inf Process Syst , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 31
    • 23844545358 scopus 로고    scopus 로고
    • An improved algorithm for kernel principal component analysis
    • Zheng WM, Zou CR, Zhao L (2005) An improved algorithm for kernel principal component analysis. Neural Process Lett 22(1): 49-56.
    • (2005) Neural Process Lett , vol.22 , Issue.1 , pp. 49-56
    • Zheng, W.M.1    Zou, C.R.2    Zhao, L.3
  • 32
    • 0036887673 scopus 로고    scopus 로고
    • Linear programming support vector machines
    • Zhou W, Zhang L, Jiao L (2002) Linear programming support vector machines. Pattern Recognit 35(12): 2927-2936.
    • (2002) Pattern Recognit , vol.35 , Issue.12 , pp. 2927-2936
    • Zhou, W.1    Zhang, L.2    Jiao, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.