메뉴 건너뛰기




Volumn 17, Issue 2, 2010, Pages 280-302

A bayesian approach for nonlinear structural equation models with dichotomous variables using logit and probit links

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN APPROACHES; BAYESIAN ESTIMATE; DEVIANCE INFORMATION CRITERION; EMPIRICAL PERFORMANCE; MODEL COMPARISON; NONLINEAR STRUCTURAL EQUATIONS; PSYCHOLOGICAL RESEARCH; SIMULATION STUDIES;

EID: 77951696419     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705511003659425     Document Type: Article
Times cited : (32)

References (42)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • In B. Petrox & F. Caski (Eds.), Budapest: Akademiai Kiado
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. Petrox & F. Caski (Eds.), Second International Symposium on Information Theory (pp. 267-281). Budapest: Akademiai Kiado.
    • (1973) Second International Symposium On Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0034557673 scopus 로고    scopus 로고
    • Bayesian factor analysis for multilevel binary observations
    • Ansari, A., & Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations. Psychometrika, 65, 475-496.
    • (2000) Psychometrika , vol.65 , pp. 475-496
    • Ansari, A.1    Jedidi, K.2
  • 4
    • 0036011444 scopus 로고    scopus 로고
    • Heterogeneous factor analysis models: A Bayesian approach
    • Ansari, A., Jedidi, K., & Dube, L. (2002). Heterogeneous factor analysis models: A Bayesian approach. Psychometrika,67,49-77.
    • (2002) Psychometrika , vol.67 , pp. 49-77
    • Ansari, A.1    Jedidi, K.2    Dube, L.3
  • 6
    • 0000433590 scopus 로고
    • Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm
    • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.
    • (1981) Psychometrika , vol.46 , pp. 443-459
    • Bock, R.D.1    Aitkin, M.2
  • 7
    • 0030451789 scopus 로고    scopus 로고
    • High dimensional multivariate probit analysis
    • Bock, R. D., & Gibbons, R. D. (1996). High dimensional multivariate probit analysis. Biometrics, 52, 1183-1194.
    • (1996) Biometrics , vol.52 , pp. 1183-1194
    • Bock, R.D.1    Gibbons, R.D.2
  • 11
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Series B
    • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of Royal Statistical Society, Series B, 39, 1-38.
    • (1977) Journal of Royal Statistical Society , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 12
    • 0034360861 scopus 로고    scopus 로고
    • Bayesian latent variable models for clustered mixed outcomes
    • Series B
    • Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes. Journal of the Royal Statistical Society, Series B, 62, 355-366.
    • (2000) Journal of The Royal Statistical Society , vol.62 , pp. 355-366
    • Dunson, D.B.1
  • 14
    • 0032337233 scopus 로고    scopus 로고
    • Health service utilization and insurance coverage: A multivariate probit analysis
    • Gibbons, R. D., & Wilcox-Gök, V. (1998). Health service utilization and insurance coverage: A multivariate probit analysis. Journal of the American Statistical Association, 93, 63-72.
    • (1998) Journal of The American Statistical Association , vol.93 , pp. 63-72
    • Gibbons, R.D.1    Wilcox-Gök, V.2
  • 15
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 18
    • 0000456985 scopus 로고
    • Estimating the nonlinear and interactive effects of latent variables
    • Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201-210.
    • (1984) Psychological Bulletin , vol.96 , pp. 201-210
    • Kenny, D.A.1    Judd, C.M.2
  • 21
    • 0035528598 scopus 로고    scopus 로고
    • Hypothesis testing and model comparison in two-level structural equation models
    • Lee, S. Y., & Song, X. Y. (2001). Hypothesis testing and model comparison in two-level structural equation models. Multivariate Behavioral Research, 36, 639-655.
    • (2001) Multivariate Behavioral Research , vol.36 , pp. 639-655
    • Lee S., Y.1
  • 22
    • 0141481031 scopus 로고    scopus 로고
    • Bayesian analysis of structural equation models with dichotomous variables
    • Lee, S. Y., & Song, X. Y. (2003). Bayesian analysis of structural equation models with dichotomous variables. Statistics in Medicine, 22, 3073-3088.
    • (2003) Statistics In Medicine , vol.22 , pp. 3073-3088
    • Lee, S.Y.1    Song, X.Y.2
  • 23
    • 19844369721 scopus 로고    scopus 로고
    • Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
    • Lee, S. Y., & Song, X. Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39, 653-686.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 653-686
    • Lee, S.Y.1    Song, X.Y.2
  • 24
    • 33745140160 scopus 로고    scopus 로고
    • Bayesian analysis of structural equation models with mixed exponential family and ordered categorical data
    • Lee, S. Y., & Tang, N. S. (2006). Bayesian analysis of structural equation models with mixed exponential family and ordered categorical data. British Journal of Mathematical & Statistical Psychology, 59, 151-172.
    • (2006) British Journal of Mathematical & Statistical Psychology , vol.59 , pp. 151-172
    • Lee, S.Y.1    Tang, N.S.2
  • 25
    • 0030336223 scopus 로고    scopus 로고
    • Fitting full-information item factor models and an empirical investigation of bridge sampling
    • Meng, X. L., & Schilling, S. (1996). Fitting full-information item factor models and an empirical investigation of bridge sampling. Journal of the American Statistical Association, 91, 1254-1267.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1254-1267
    • Meng, X.L.1    Schilling, S.2
  • 28
    • 10044290370 scopus 로고    scopus 로고
    • Generalized multilevel structural equation modeling
    • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychome- trika, 69, 167-190.
    • (2004) Psychome- Trika , vol.69 , pp. 167-190
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 29
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis testing and model selection
    • In W. R. Wilks, S. Richardson, & D. J. Spiegelhalter (Eds.)
    • Raftery, A. E. (1996). Hypothesis testing and model selection. In W. R. Wilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in practice (pp. 163-188). London: Chapman & Hall.
    • (1996) Markov Chain Monte Carlo In Practice , vol.64 , pp. 37-52
    • Raftery, A.E.1
  • 30
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing of structural equation models
    • Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 37-52.
    • (1999) Psychometrika , vol.64 , pp. 37-52
    • Scheines, R.1    Hoijtink, H.2    Boomsma, A.3
  • 31
    • 0003700984 scopus 로고    scopus 로고
    • Schumacker, R. E., & Marcoulides, G. A. (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates, Inc
    • Schumacker, R. E., & Marcoulides, G. A. (Eds.) (1998). Interaction and nonlinear effects in structural equation modeling. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • (1998) Interaction and Nonlinear Effects In Structural Equation Modeling
  • 32
    • 37349019755 scopus 로고    scopus 로고
    • Boa: An R Package for MCMC output convergence assessment and posterior inference
    • Smith, B. J. (2007). boa: An R Package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21, 1-37.
    • (2007) Journal of Statistical Software , vol.21 , pp. 1-37
    • Smith, B.J.1
  • 33
    • 0035998146 scopus 로고    scopus 로고
    • Analysis of structural equation model with ignorable missing continuous and polytomous data
    • Song, X. Y., & Lee, S. Y. (2002). Analysis of structural equation model with ignorable missing continuous and polytomous data. Psychometrika, 67, 261-288.
    • (2002) Psychometrika , vol.67 , pp. 261-288
    • Song, X.Y.1    Lee, S.Y.2
  • 34
    • 27144553773 scopus 로고    scopus 로고
    • A multivariate probit latent variable model for analyzing dichotomous responses
    • Song, X. Y., & Lee, S. Y. (2005). A multivariate probit latent variable model for analyzing dichotomous responses. Statistica Sinica, 15, 645-664.
    • (2005) Statistica Sinica , vol.15 , pp. 645-664
    • Song, X.Y.1    Lee, S.Y.2
  • 35
    • 33846403783 scopus 로고    scopus 로고
    • Bayesian analysis of latent variable models with nonignorable missing outcomes from exponential family
    • Song, X. Y., & Lee, S. Y. (2007). Bayesian analysis of latent variable models with nonignorable missing outcomes from exponential family. Statistics in Medicine, 26, 681-693.
    • (2007) Statistics In Medicine , vol.26 , pp. 681-693
    • Song, X.Y.1    Lee, S.Y.2
  • 39
    • 0035543522 scopus 로고    scopus 로고
    • Factor analysis with (mixed) observed and latent variables in the exponential family
    • Wedel, M., & Kamakura, W. A. (2001). Factor analysis with (mixed) observed and latent variables in the exponential family. Psychometrika, 66, 515-530.
    • (2001) Psychometrika , vol.66 , pp. 515-530
    • Wedel, M.1    Kamakura, W.A.2
  • 40
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm
    • Wei, G. C. G., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. Journal of the American Statistical Association, 85, 699-704.
    • (1990) Journal of The American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 41
    • 84910906566 scopus 로고
    • Generalized linear models with random effects: A Gibbs sampling approach
    • Zeger, S. L., & Karim, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American Statistical Association, 86, 79-86.
    • (1991) Journal of The American Statistical Association , vol.86 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.