-
2
-
-
0001799499
-
Ten problems. Theory of singularities and its applications
-
Arnol'd, V. I. [1990] "Ten problems. Theory of singularities and its applications, " Adv. Soviet Math. 1, 1-8.
-
(1990)
Adv. Soviet Math
, vol.1
, pp. 1-8
-
-
Arnol'd, V.I.1
-
3
-
-
52649094247
-
6-equivariant planar vector field of degree 5
-
Q-equivariant planar vector fields of degree 5, " Foundations of Computational Mathematics (Hong Kong, 2000) (World Scientific, Singapore), pp. 61-83. (Pubitemid 135703898)
-
(2002)
Science in China, Series A: Mathematics, Physics, Astronomy
, vol.45
, Issue.7
-
-
Li, J.1
Chan, H.S.Y.2
Chung, K.W.3
-
4
-
-
30944447320
-
A unified proof on the weak Hilbert 16th problem for n = 2
-
DOI 10.1016/j.jde.2005.01.009, PII S0022039605000306
-
Chen, F., Li, C., Llibre, J. & Zhang, Z. [2006] "A unified proof on the weak Hilbert 16th problem for n = 2, " J. Diff. Eqs. 221, 309-342. (Pubitemid 43116354)
-
(2006)
Journal of Differential Equations
, vol.221
, Issue.2
, pp. 309-342
-
-
Chen, F.1
Li, C.2
Llibre, J.3
Zhang, Z.4
-
6
-
-
77951576798
-
-
CXSC, version 2.2.3, Available from
-
CXSC [2008] C++ eXtension for Scientific Computation, version 2.2.3, Available from http://www.math.uni-wuppertal.de/org/WRST/xsc/cxsc.html
-
(2008)
C++ EXtension for Scientific Computation
-
-
-
8
-
-
0003285244
-
Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
-
Springer-Verlag, NY
-
Guckenheimer, J. & Holmes, P. [1983] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, Vol. 42 (Springer-Verlag, NY).
-
(1983)
Applied Mathematical Sciences
, vol.42
-
-
Guckenheimer, J.1
Holmes, P.2
-
9
-
-
0003560312
-
-
Springer-Verlag, NY
-
Hammer, R., Hocks, M., Kulisch, U. & Ratz, D. [1995] C++ Toolbox for Verified Computing (Springer-Verlag, NY).
-
(1995)
C++ Toolbox for Verified Computing
-
-
Hammer, R.1
Hocks, M.2
Kulisch, U.3
Ratz, D.4
-
10
-
-
0347466739
-
Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians
-
PII S0951771598884843
-
Horozov, E. & Iliev, I. D. [1998] "Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, " Nonlinearity 11, 1521-1537. (Pubitemid 128406182)
-
(1998)
Nonlinearity
, vol.11
, Issue.6
, pp. 1521-1537
-
-
Horozov, E.1
Iliev, I.D.2
-
11
-
-
0003784705
-
-
American Mathematical Society, Providence, RI
-
Il'yashenko, Yu. S. [1991] Finiteness Theorems for Limit Cycles, Translations of Mathematical Monographs, Vol. 94 (American Mathematical Society, Providence, RI).
-
(1991)
Finiteness Theorems for Limit Cycles, Translations of Mathematical Monographs
, vol.94
-
-
Il'yashenko Yu., S.1
-
12
-
-
0035997405
-
Centennial history of Hilbert's 16th problem
-
Il'yashenko, Yu. S. [2002] "Centennial history of Hilbert's 16th problem, " Bull. Amer. Math. Soc. (N. S.) 39, 301-354.
-
(2002)
Bull. Amer. Math. Soc. (N. S.)
, vol.39
, pp. 301-354
-
-
Il'yashenko Yu., S.1
-
14
-
-
70349510621
-
A rigorous study of possible configurations of limit cycles bifurcating from a hyper-elliptic Hamiltonian of degree five
-
Johnson, T. & Tucker, W. [2009] "A rigorous study of possible configurations of limit cycles bifurcating from a hyper-elliptic Hamiltonian of degree five, " Dyn. Syst. - An Int. J. 24, 237-247.
-
(2009)
Dyn. Syst. - An Int. J.
, vol.24
, pp. 237-247
-
-
Johnson, T.1
Tucker, W.2
-
15
-
-
0001171535
-
Bifurcations of limit cycles forming compound eyes in the cubic system
-
Li, J. B. & Huang, G. M. [1987] "Bifurcations of limit cycles forming compound eyes in the cubic system, " Chinese Ann. Math. Ser. B 8, 391-403.
-
(1987)
Chinese Ann. Math. Ser. B
, vol.8
, pp. 391-403
-
-
Li, J.B.1
Huang, G.M.2
-
16
-
-
52649094247
-
6-equivariant planar vector field of degree 5
-
6-equivariant planar vector field of degree 5, " Sci. China Ser. A 45, 817-826. (Pubitemid 135703898)
-
(2002)
Science in China, Series A: Mathematics, Physics, Astronomy
, vol.45
, Issue.7
-
-
Li, J.1
Chan, H.S.Y.2
Chung, K.W.3
-
17
-
-
20444464286
-
Bifurcations of Limit Cycles in a Z8-Equivariant Planar Vector Field of Degree 7
-
DOI 10.1007/s10884-004-7835-7
-
8-equivariant planar vector field of degree 7, " J. Dyn. Diff. Eqs. 16, 1123-1139. (Pubitemid 40133376)
-
(2004)
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS
, vol.16
, Issue.4
, pp. 1123-1139
-
-
Li, J.1
Zhang, M.2
-
18
-
-
0004293209
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
Moore, R. E. [1966] Interval Analysis (Prentice-Hall, Englewood Cliffs, NJ).
-
(1966)
Interval Analysis
-
-
Moore, R.E.1
-
19
-
-
0003236553
-
Methods and applications of interval analysis
-
Philadelphia
-
Moore, R. E. [1979] Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics (Philadelphia).
-
(1979)
SIAM Studies in Applied Mathematics
-
-
Moore, R.E.1
-
21
-
-
0003548411
-
-
Wiley-VCH Verlag Berlin GmbH, Berlin
-
Petković, M. S. & Petković, L. D. [1998] Complex Interval Arithmetic and its Applications, Mathematical Research, Vol. 105 (Wiley-VCH Verlag Berlin GmbH, Berlin).
-
(1998)
Complex Interval Arithmetic and its Applications, Mathematical Research
, vol.105
-
-
Petković, M.S.1
Petković, L.D.2
-
22
-
-
0003244212
-
Bifurcation of planar vector fields and Hilbert's sixteenth problem
-
Birkhäuser Verlag, Basel
-
Roussarie, R. [1998] Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progress in Mathematics, Vol. 164 (Birkhäuser Verlag, Basel).
-
(1998)
Progress in Mathematics
, vol.164
-
-
Roussarie, R.1
-
23
-
-
20444455852
-
Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation
-
DOI 10.1016/j.chaos.2005.03.010, PII S0960077905002663
-
Wang, S. & Yu, P. [2005] "Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation, " Chaos Solit. Fract. 26, 1317-1335. (Pubitemid 40821859)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.5
, pp. 1317-1335
-
-
Wang, S.1
Yu, P.2
-
24
-
-
33745121921
-
Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11
-
DOI 10.1016/j.chaos.2005.12.016, PII S0960077905012038
-
Wang, S. & Yu, P. [2006] "Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11, " Chaos Solit. Fract. 30, 606-621. (Pubitemid 43903179)
-
(2006)
Chaos, Solitons and Fractals
, vol.30
, Issue.3
, pp. 606-621
-
-
Wang, S.1
Yu, P.2
-
26
-
-
24144462859
-
Twelve limit cycles in a cubic case of the 16th hilbert problem
-
DOI 10.1142/S0218127405013289, PII S0218127405013289
-
Yu, P. & Han, M. [2005] "Twelve limit cycles in a cubic case of the 16th Hilbert problem, " Int. J. Bifurcation and Chaos 15, 2191-2205. (Pubitemid 41240217)
-
(2005)
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
, vol.15
, Issue.7
, pp. 2191-2205
-
-
Yu, P.1
Han, M.2
-
27
-
-
20444467931
-
2-symmetry
-
Zhang, T., Han, M., Zang, H. & Meng, X. [2004] "Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations, " Chaos Solit. Fract. 22, 1127-1138. (Pubitemid 41301963)
-
(2004)
Communications on Pure and Applied Analysis
, vol.3
, Issue.3
, pp. 515-526
-
-
Yu, P.1
Han, M.2
-
28
-
-
34249790285
-
On the number of limit cycles of a cubic polynomials Hamiltonian system under quintic perturbation
-
DOI 10.1016/j.amc.2007.01.052, PII S009630030700080X
-
Zhou, H., Xu, W., Li, S. & Zhang, Y. [2007a] "On the number of limit cycles of a cubic polynomials Hamiltonian system under quintic perturbation, " Appl. Math. Comput. 190, 490-499. (Pubitemid 46856679)
-
(2007)
Applied Mathematics and Computation
, vol.190
, Issue.1
, pp. 490-499
-
-
Zhou, H.1
Xu, W.2
Li, S.3
Zhang, Y.4
-
29
-
-
34548118258
-
Detection function method and its application to a class of quintic Hamiltonian systems with quintic perturbations
-
DOI 10.1016/j.amc.2007.02.151, PII S0096300307002779
-
Zhou, H., Xu, W., Zhao, X. & Li, S. [2007b] "Detection function method and its application to a class of quintic Hamiltonian systems with quintic perturbations, " Appl. Math. Comput. 191, 490-503. (Pubitemid 47302097)
-
(2007)
Applied Mathematics and Computation
, vol.191
, Issue.2
, pp. 490-503
-
-
Zhou, H.1
Xu, W.2
Zhao, X.3
Li, S.4
|