-
1
-
-
77951538268
-
-
http://picasa.google.com.
-
-
-
-
2
-
-
77951557880
-
-
http://www.flickr.com/.
-
-
-
-
4
-
-
52649118114
-
Semi-supervised multi-label learning by solving a sylvester equation
-
Atlanta, Georgia
-
G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-supervised multi-label learning by solving a sylvester equation. In SIAM International Conference on Data Mining (SDM), pages 410-419, Atlanta, Georgia, 2008.
-
(2008)
SIAM International Conference on Data Mining (SDM)
, pp. 410-419
-
-
Chen, G.1
Song, Y.2
Wang, F.3
Zhang, C.4
-
5
-
-
33947180489
-
Miles: Multiple-instance learning via embedded instance selection
-
Y. Chen, J. Bi, and J. Z. Wang. Miles: Multiple-instance learning via embedded instance selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):1931-1947, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.12
, pp. 1931-1947
-
-
Chen, Y.1
Bi, J.2
Wang, J.Z.3
-
6
-
-
74049158146
-
Nus-wide: A real-world web image database from national university of singapore
-
T. S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: A real-world web image database from national university of singapore. In Proceedings of ACM Conference on Image and Video Retrieval (CIVR), 2009.
-
Proceedings of ACM Conference on Image and Video Retrieval (CIVR), 2009
-
-
Chua, T.S.1
Tang, J.2
Hong, R.3
Li, H.4
Luo, Z.5
Zheng, Y.6
-
7
-
-
33646365077
-
For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
-
D. L. Donoho. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6):797-826, 2006.
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, Issue.6
, pp. 797-826
-
-
Donoho, D.L.1
-
8
-
-
40849134401
-
Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation
-
J. Fan, Y. Gao, and H. Luo. Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation. IEEE Transactions on Image Processing, 17(3):407-426, 2008.
-
(2008)
IEEE Transactions on Image Processing
, vol.17
, Issue.3
, pp. 407-426
-
-
Fan, J.1
Gao, Y.2
Luo, H.3
-
9
-
-
38349146482
-
Mining multilevel image semantics via hierarchical classification
-
J. Fan, Y. Gao, H. Luo, and R. Jain. Mining multilevel image semantics via hierarchical classification. IEEE Transactions on Multimedia, 10(2):167-187, 2008.
-
(2008)
IEEE Transactions on Multimedia
, vol.10
, Issue.2
, pp. 167-187
-
-
Fan, J.1
Gao, Y.2
Luo, H.3
Jain, R.4
-
10
-
-
33745155436
-
A bayesian hierarchical model for learning natural scene categories
-
DOI 10.1109/CVPR.2005.16, 1467486, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
-
L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 524-531, 2005. (Pubitemid 43897401)
-
(2005)
Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
, vol.II
, pp. 524-531
-
-
Fei-Fei, L.1
Perona, P.2
-
11
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology, 143(1):29-36, 1982. (Pubitemid 12142173)
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
12
-
-
19544362354
-
Mining ratio rules via principal sparse non-negative matrix factorization
-
C. Hu, B. Zhang, S. Yan, Q. Yang, J. Yan, Z. Chen, and W. Y. Ma. Mining ratio rules via principal sparse non-negative matrix factorization. In Proceedings of IEEE International Conference on Data Mining (ICDM), pages 407-410, 2004.
-
(2004)
Proceedings of IEEE International Conference on Data Mining (ICDM)
, pp. 407-410
-
-
Hu, C.1
Zhang, B.2
Yan, S.3
Yang, Q.4
Yan, J.5
Chen, Z.6
Ma, W.Y.7
-
14
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999. (Pubitemid 129515838)
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
16
-
-
70350647018
-
Semi-supervised multi-label learning by constrained non-negative matrix factorization
-
Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In Proceedings of National Conference on Artificial Intelligence and Innovative Applications of Artificial Intelligence Conference (AAAI), volume 21, pages 666-671, 2006.
-
(2006)
Proceedings of National Conference on Artificial Intelligence and Innovative Applications of Artificial Intelligence Conference (AAAI)
, vol.21
, pp. 666-671
-
-
Liu, Y.1
Jin, R.2
Yang, L.3
-
17
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
-
(2004)
International Journal of Computer Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
18
-
-
14644408001
-
A Bayesian network-based framework for semantic image understanding
-
DOI 10.1016/j.patcog.2004.11.001, PII S003132030400408X, Image Understanding for Photographs
-
J. Luo, A. E. Savakis, and A. Singhal. A bayesian network-based framework for semantic image understanding. Pattern Recognition, 38(6):919-934, 2005. (Pubitemid 40308639)
-
(2005)
Pattern Recognition
, vol.38
, Issue.6
, pp. 919-934
-
-
Luo, J.1
Savakis, A.E.2
Singhal, A.3
-
20
-
-
37849015906
-
Correlative multi-label video annotation
-
G. J. Qi, X. S. Hua, Y. Rui, J. Tang, T. Mei, and H. J. Zhang. Correlative multi-label video annotation. In Proceedings of the 15th ACM International Conference on Multimedia (MM), pages 17-26, 2007.
-
(2007)
Proceedings of the 15th ACM International Conference on Multimedia (MM)
, pp. 17-26
-
-
Qi, G.J.1
Hua, X.S.2
Rui, Y.3
Tang, J.4
Mei, T.5
Zhang, H.J.6
-
21
-
-
0032663356
-
Image retrieval: Current techniques, promising directions, and open issues
-
Y. Rui, T. S. Huang, and S. F. Chang. Image retrieval: Current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation, 10(1):39-62, 1999.
-
(1999)
Journal of Visual Communication and Image Representation
, vol.10
, Issue.1
, pp. 39-62
-
-
Rui, Y.1
Huang, T.S.2
Chang, S.F.3
-
22
-
-
33845423382
-
Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
-
J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In Proceedings of the 9th European Conference on Computer Vision (ECCV), volume 3954, 2006.
-
(2006)
Proceedings of the 9th European Conference on Computer Vision (ECCV)
, vol.3954
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
28
-
-
33846580425
-
Local features and kernels for classification of texture and object categories: A comprehensive study
-
J. Zhang, M. Marsza ek, and C. Lazebnik. Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision, 73(2):213-238, 2007.
-
(2007)
International Journal of Computer Vision
, vol.73
, Issue.2
, pp. 213-238
-
-
Zhang, J.1
Ek Marsza, M.2
Lazebnik, C.3
-
29
-
-
84864028262
-
Multi-instance multi-label learning with application to scene classification
-
Z. H. Zhou and M. L. Zhang. Multi-instance multi-label learning with application to scene classification. Advances in Neural Information Processing Systems, 19:1609-1616, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1609-1616
-
-
Zhou, Z.H.1
Zhang, M.L.2
-
30
-
-
84885572482
-
Multi-labelled classification using maximum entropy method
-
S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum entropy method. In Proceedings of the 28th Annual International ACM SIGIR Conference, pages 274-281, 2005.
-
(2005)
Proceedings of the 28th Annual International ACM SIGIR Conference
, pp. 274-281
-
-
Zhu, S.1
Ji, X.2
Xu, W.3
Gong, Y.4
|