메뉴 건너뛰기




Volumn 20, Issue 1, 2010, Pages 1-11

Cascade process modeling with mechanism-based hierarchical neural networks

Author keywords

Cascade process; Hierarchical neural networks; Modeling; Wastewater treatment process

Indexed keywords

CASCADE PROCESS; HIERARCHICAL NEURAL NETWORKS; INPUT-OUTPUT RELATIONS; MODELING APPROACH; NEURAL MODELS; OPERATIONAL DATA; PHYSICAL EQUATIONS; STRUCTURAL MECHANISMS; SUB-SYSTEMS; WASTEWATER TREATMENT PLANTS; WASTEWATER TREATMENT PROCESS; WHOLE PROCESS;

EID: 77951527667     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S012906571000219X     Document Type: Article
Times cited : (19)

References (22)
  • 2
    • 34047184921 scopus 로고    scopus 로고
    • Stability of neural field
    • DOI 10.1142/S0129065707000919, PII S0129065707000919
    • J. Wu and K. Chen, Stability of neural field, International Journal of Neural Systems 17 (1) (2007) 53-60. (Pubitemid 46515943)
    • (2007) International Journal of Neural Systems , vol.17 , Issue.1 , pp. 53-60
    • Wu, J.-W.1    Chen, K.-C.2
  • 3
    • 0026679595 scopus 로고
    • Learning and convergence analysis of neural-type structured networks
    • M. M. Polycarpou and P. A. Ioannou, Learning and convergence analysis of neural-type structured networks, IEEE Trans. Neural Networks 3 (1) (1992) 39-50.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 39-50
    • Polycarpou, M.M.1    Ioannou, P.A.2
  • 4
    • 0037861046 scopus 로고    scopus 로고
    • Discrete-time neuro identification without robust modification
    • W. Yu and X. Li, Discrete-time neuro identification without robust modification, IEE P roceedings - Control Theory and Applications 150 (3) (2003) 311-316.
    • (2003) IEE P Roceedings - Control Theory and Applications , vol.150 , Issue.3 , pp. 311-316
    • Yu, W.1    Li, X.2
  • 7
    • 34249903599 scopus 로고    scopus 로고
    • System identification using hierarchical fuzzy neural networks with stable learning algorithm
    • W. Yu, M. A. Moreno and F. Ortiz, System identification using hierarchical fuzzy neural networks with stable learning algorithm, Journal of Intelligent and Fuzzy Systems 18 (2) (2007) 171-183. (Pubitemid 46868435)
    • (2007) Journal of Intelligent and Fuzzy Systems , vol.18 , Issue.2 , pp. 171-183
    • Yu, W.1    Moreno-Armendariz, M.A.2    Rodriguez, F.O.3
  • 8
    • 0033204912 scopus 로고    scopus 로고
    • Analysis and design of hierarchical fuzzy systems
    • DOI 10.1109/91.797984
    • L. X. Wang, Analysis and design of hierarchical fuzzy systems, IEEE Transactions on Fuzzy Systems 7 (3) (1999) 617-624. (Pubitemid 32081744)
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.5 , pp. 617-624
    • Wang Li-Xin1
  • 9
    • 54349112429 scopus 로고    scopus 로고
    • Hierarchical fuzzy CMAC for nonlinear systems modeling
    • W. Yu, F. Ortiz and M. A. Moreno, Hierarchical fuzzy CMAC for nonlinear systems modeling, IEEE Transactions on Fuzzy Systems 16 (5) (2008) 1302-1314.
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.5 , pp. 1302-1314
    • Yu, W.1    Ortiz, F.2    Moreno, M.A.3
  • 10
    • 33244468573 scopus 로고    scopus 로고
    • Constructing a model hierarchy with background knowledge for structural risk minimization: Application to biological treatment of wastewater
    • A. A. Guergachi and G. G. Patry, Constructing a model hierarchy with background knowledge for structural risk minimization: Application to biological treatment of wastewater, IEEE Trans. Systems, Man and Cybernetics - Part A: Systems and Humans 36 (2) (2006) 1-11.
    • (2006) IEEE Trans. Systems, Man and Cybernetics - Part A: Systems and Humans , vol.36 , Issue.2 , pp. 1-11
    • Guergachi, A.A.1    Patry, G.G.2
  • 11
    • 27644483709 scopus 로고    scopus 로고
    • Approximation capabilities of hierarchical fuzzy systems
    • DOI 10.1109/TFUZZ.2005.856559
    • X. J. Zeng and J. A. Keane, Approximation capabilities of hierarchical fuzzy systems, IEEE Transactions on Fuzzy Systems 13 (5) (2005) 659-672. (Pubitemid 41555592)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.5 , pp. 659-672
    • Zeng, X.-J.1    Keane, J.A.2
  • 12
    • 51449099956 scopus 로고    scopus 로고
    • Experienceconsistent modeling for radial basis function neural networks
    • W. Pedrycz, R. Rai and J. Zurada, Experienceconsistent modeling for radial basis function neural networks, International Journal of Neural Systems 18 (4) 279-292.
    • International Journal of Neural Systems , vol.18 , Issue.4 , pp. 279-292
    • Pedrycz, W.1    Rai, R.2    Zurada, J.3
  • 13
    • 18944372441 scopus 로고    scopus 로고
    • Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant
    • D. S. Lee, P. A. Vanrolleghem and J. M. Park, Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant, Journal of Biotechnology 115 (3) (2005) 317-328.
    • (2005) Journal of Biotechnology , vol.115 , Issue.3 , pp. 317-328
    • Lee, D.S.1    Vanrolleghem, P.A.2    Park, J.M.3
  • 14
    • 0032317676 scopus 로고    scopus 로고
    • An on-line wastewater quality predication system based on a time-delay neural network
    • PII S0952197698000177
    • J. B. Zhu, J. Zurcher, M. Rao and M. Q.-H. Meng, An on-line wastewater quality predication system based on a time-delay neural network, Engineering Applications of Artificial Intelligence 11 (6) (1998) 47-758. (Pubitemid 128409037)
    • (1998) Engineering Applications of Artificial Intelligence , vol.11 , Issue.6 , pp. 747-758
    • Zhu, J.1    Zurcher, J.2    Rao, M.3    Meng, M.Q.-H.4
  • 16
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal activation function
    • G. Cybenko, Approximation by superposition of sigmoidal activation function, Math. Control Sig. Syst. 2 (4) (1989) 303-314.
    • (1989) Math. Control Sig. Syst. , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 17
    • 0026238002 scopus 로고
    • A dynamic model of the clarification thickening process
    • I. Takacs, G. G. Patry and D. Nolasco, A dynamic model of the clarification thickening process, Wat. Res. 25 (10) (1991) 1263-1271.
    • (1991) Wat. Res. , vol.25 , Issue.10 , pp. 1263-1271
    • Takacs, I.1    Patry, G.G.2    Nolasco, D.3
  • 21
    • 24944539826 scopus 로고    scopus 로고
    • Wastewater BOD forecasting model for optimal operation using robust time-delay neural network
    • Springer-Verlag Berlin, Heidelberg
    • L. J. Zhao and T. Y. Chai, Wastewater BOD forecasting model for optimal operation using robust time-delay neural network, Lect. Notes Comput. Sci. (Springer-Verlag Berlin, Heidelberg, 2005), pp. 1028-1033.
    • (2005) Lect. Notes Comput. Sci. , pp. 1028-1033
    • Zhao, L.J.1    Chai, T.Y.2
  • 22
    • 67650081522 scopus 로고    scopus 로고
    • Modeling and optimization of a pharmaceutical formulation system using radial basis function network
    • P. Anand, B. V. N. Siva Prasad and Ch. Venkateswarlu, Modeling and optimization of a pharmaceutical formulation system using radial basis function network, International Journal of Neural Systems 19 (2) (2009) 127-136.
    • (2009) International Journal of Neural Systems , vol.19 , Issue.2 , pp. 127-136
    • Anand, P.1    Prasad, B.V.N.S.2    Venkateswarlu, Ch.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.