메뉴 건너뛰기




Volumn 44, Issue 3, 1998, Pages 1010-1025

Error bounds for functional approximation and estimation using mixtures of experts

Author keywords

Approximation error; Estimation error; Mixture of experts

Indexed keywords

APPROXIMATION THEORY; ERRORS; ESTIMATION; EXPERT SYSTEMS; FUNCTIONS; MATHEMATICAL MODELS; PROBABILITY; REGRESSION ANALYSIS; VECTORS;

EID: 0032072087     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/18.669150     Document Type: Article
Times cited : (32)

References (27)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akakike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. AC-19, no. 6, pp. 716-723, 1974.
    • (1974) IEEE Trans. Automat. Contr. , vol.AC-19 , Issue.6 , pp. 716-723
    • Akakike, H.1
  • 3
    • 0000729504 scopus 로고
    • Statistical theory of learning curves under entropie loss criterion
    • S. I. Amari and N. Murata, "Statistical theory of learning curves under entropie loss criterion," Neural Comp., vol. 5, pp. 140-153, 1993.
    • (1993) Neural Comp , vol.5 , pp. 140-153
    • Amari, S.I.1    Murata, N.2
  • 4
    • 0026190366 scopus 로고
    • Minimum complexity density estimation
    • July
    • A. R. Barron and T. M. Cover, "Minimum complexity density estimation," IEEE Trans. Inform. Theory, vol. 37, pp. 1034-1054, July 1991.
    • (1991) IEEE Trans. Inform. Theory , vol.37 , pp. 1034-1054
    • Barron, A.R.1    Cover, T.M.2
  • 5
    • 0027599793 scopus 로고
    • Universal approximation bound for superpositions of a sigmoidal function
    • _, "Universal approximation bound for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
  • 6
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • A. R. Barron, "Approximation and estimation bounds for artificial neural networks," Machine Learning, vol. 4, pp. 115-133, 1994.
    • (1994) Machine Learning , vol.4 , pp. 115-133
    • Barron, A.R.1
  • 9
    • 0001414599 scopus 로고
    • Nonparameteric maximum likelihood estimation by the method of sieves
    • S. Geman and C. R. Hwang, "Nonparameteric maximum likelihood estimation by the method of sieves," Ann. Statist., vol. 10, no. 2, pp. 401-414, 1982.
    • (1982) Ann. Statist. , vol.10 , Issue.2 , pp. 401-414
    • Geman, S.1    Hwang, C.R.2
  • 11
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M. I. Jordan and R. A. Jacobs, "Hierarchical mixtures of experts and the EM algorithm," Neural Comp., vol. 6, pp. 181-214, 1994.
    • (1994) Neural Comp , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 13
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a non-polynomial activation function can approximate any function
    • M. Leshno, V. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a non-polynomial activation function can approximate any function," Neural Net., vol. 6, pp. 861-867, 1993.
    • (1993) Neural Net , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Pinkus, A.3    Schocken, S.4
  • 14
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • H. Mhaskar, "Neural networks for optimal approximation of smooth and analytic functions," Neural Comp., vol. 8, no. 1, pp. 164-177, 1996.
    • (1996) Neural Comp , vol.8 , Issue.1 , pp. 164-177
    • Mhaskar, H.1
  • 15
    • 0028544395 scopus 로고
    • Network information criterion - Determining the number of hidden units for an artificial neural network
    • N. Murata, S. Yoshizawa, and S. I. Amari, "Network information criterion - Determining the number of hidden units for an artificial neural network," IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 865-872, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.I.3
  • 16
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • R. A. Redner and H. F. Walker, "Mixture densities, maximum likelihood and the EM algorithm," SIAM Rev., vol. 26, pp. 195-239, 1984.
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 17
    • 0021466584 scopus 로고
    • Universal coding, information prediction and estimation
    • July
    • J. Rissanen, "Universal coding, information prediction and estimation," IEEE Trans. Inform. Theory, vol. IT-30, pp. 629-636, July 1984.
    • (1984) IEEE Trans. Inform. Theory , vol.IT-30 , pp. 629-636
    • Rissanen, J.1
  • 22
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • _, "Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings," Neural Net., vol. 3, pp. 535-549, 1991.
    • (1991) Neural Net. , vol.3 , pp. 535-549
  • 23
    • 84950860747 scopus 로고
    • Consequences and detection of misspecified nonlinear regression models
    • _, "Consequences and detection of misspecified nonlinear regression models," J. Amer. Statist. Assoc., vol. 76, pp. 419-433, 1981.
    • (1981) J. Amer. Statist. Assoc. , vol.76 , pp. 419-433
  • 24
    • 0029341524 scopus 로고
    • Sup-norm approximation bounds for networks through probabilistic methods
    • July
    • J. E. Yukich, M. B. Stinchcombe, and H. White, "Sup-norm approximation bounds for networks through probabilistic methods," IEEE Trans. Inform. Theory, vol. 41, pp. 1021-1027, July 1995.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 1021-1027
    • Yukich, J.E.1    Stinchcombe, M.B.2    White, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.