-
1
-
-
0346847567
-
Unsupervised learning of prototypes and attribute weights
-
H. Frigui and O. Nasraoui, "Unsupervised learning of prototypes and attribute weights, " Pattern Recognition, vol. 37, no. 3, pp. 567-581, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.3
, pp. 567-581
-
-
Frigui, H.1
Nasraoui, O.2
-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications, " SIGMOD Rec., vol. 27, no. 2, pp. 94-105, 1998.
-
(1998)
SIGMOD Rec.
, vol.27
, Issue.2
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
3
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, "Fast algorithms for projected clustering, " SIGMOD Rec., vol. 28, no. 2, pp. 61-72, 1999.
-
(1999)
SIGMOD Rec.
, vol.28
, Issue.2
, pp. 61-72
-
-
Aggarwal, C.C.1
Wolf, J.L.2
Yu, P.S.3
Procopiuc, C.4
Park, J.S.5
-
4
-
-
0002646822
-
Entropy-based subspace clustering for mining numerical data
-
ACM
-
C. H. Cheng, A. W. Fu, and Y. Zhang, "Entropy-based subspace clustering for mining numerical data, " in Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 1999, pp. 84-93.
-
(1999)
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 84-93
-
-
Cheng, C.H.1
Fu, A.W.2
Zhang, Y.3
-
5
-
-
13844297591
-
Harp: A practical projected clustering algorithm
-
Nov.
-
K. Yip, D. Cheung, and M. Ng, "Harp: a practical projected clustering algorithm, " IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 11, pp. 1387-1397, Nov. 2004.
-
(2004)
IEEE Transactions on Knowledge and Data Engineering
, vol.16
, Issue.11
, pp. 1387-1397
-
-
Yip, K.1
Cheung, D.2
Ng, M.3
-
6
-
-
34548723854
-
Distance based subspace clustering with flexible dimension partitioning
-
April
-
G. Liu, J. Li, K. Sim, and L. Wong, "Distance based subspace clustering with flexible dimension partitioning, " in IEEE 23rd International Conference on Data Engineering, April 2007, pp. 1250-1254.
-
(2007)
IEEE 23rd International Conference on Data Engineering
, pp. 1250-1254
-
-
Liu, G.1
Li, J.2
Sim, K.3
Wong, L.4
-
7
-
-
14344264451
-
Integrating constraints and metric learning in semi-supervised clustering
-
M. Bilenko, S. Basu, and R. J. Mooney, "Integrating constraints and metric learning in semi-supervised clustering, " in ICML, 2004, pp. 81-88.
-
(2004)
ICML
, pp. 81-88
-
-
Bilenko, M.1
Basu, S.2
Mooney, R.J.3
-
8
-
-
34347228671
-
An entropy weighting kmeans algorithm for subspace clustering of high-dimensional sparse data
-
L. Jing, M. K. Ng, and J. Z. Huang, "An entropy weighting kmeans algorithm for subspace clustering of high-dimensional sparse data, " IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 8, pp. 1026-1041, 2007.
-
(2007)
IEEE Transactions on Knowledge and Data Engineering
, vol.19
, Issue.8
, pp. 1026-1041
-
-
Jing, L.1
Ng, M.K.2
Huang, J.Z.3
-
9
-
-
84885640929
-
Multi-label informed latent semantic indexing
-
New York, NY, USA: ACM
-
K. Yu, S. Yu, and V. Tresp, "Multi-label informed latent semantic indexing, " in SIGIR '05: Proceedings of the 28th Annual International ACM SIGIR conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2005, pp. 258-265.
-
(2005)
SIGIR '05: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 258-265
-
-
Yu, K.1
Yu, S.2
Tresp, V.3
-
10
-
-
30344483178
-
Document clustering using locality preserving indexing
-
Dec.
-
D. Cai, X. He, and J. Han, "Document clustering using locality preserving indexing, " IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 12, pp. 1624-1637, Dec. 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.12
, pp. 1624-1637
-
-
Cai, D.1
He, X.2
Han, J.3
-
12
-
-
67049160126
-
A practical approach to classify evolving data streams: Training with limited amount of labeled data
-
Dec.
-
M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, "A practical approach to classify evolving data streams: Training with limited amount of labeled data, " in Eighth IEEE International Conference on Data Mining, Dec. 2008, pp. 929-934.
-
(2008)
Eighth IEEE International Conference on Data Mining
, pp. 929-934
-
-
Masud, M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
|