메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Multi-instance learning with relational information of instances

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE SPACE; MULTI-INSTANCE LEARNING; TEXT CATEGORIZATION;

EID: 77951157561     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WACV.2009.5403078     Document Type: Conference Paper
Times cited : (2)

References (23)
  • 2
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, pages 561-568, 2003.
    • (2003) NIPS , pp. 561-568
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 3
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 6
    • 33947180489 scopus 로고    scopus 로고
    • MILES: Multiple-instance learning via embedded instance selection
    • Y. Chen, J. Bi, and J. Z. Wang. MILES: Multiple-instance learning via embedded instance selection. IEEE TPAMI, 28(12):1931-1947, 2006.
    • (2006) IEEE TPAMI , vol.28 , Issue.12 , pp. 1931-1947
    • Chen, Y.1    Bi, J.2    Wang, J.Z.3
  • 7
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Y. Chen and J. Wang. Image categorization by learning and reasoning with regions. JMLR, 5:913-939, 2004.
    • (2004) JMLR , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.2
  • 10
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In CVPR, pages 264-271, 2003.
    • (2003) CVPR , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 11
    • 70450284668 scopus 로고    scopus 로고
    • An instance selection approach to multiple instance learning
    • Z. Fu and A. Robles-Kelly. An instance selection approach to multiple instance learning. In CVPR, 2009.
    • (2009) CVPR
    • Fu, Z.1    Robles-Kelly, A.2
  • 13
    • 70450188046 scopus 로고    scopus 로고
    • Localized context-based image retrieval through evidence region identification
    • W.-J. Li and D.-Y. Yeung. Localized context-based image retrieval through evidence region identification. In CVPR, 2009.
    • (2009) CVPR
    • Li, W.-J.1    Yeung, D.-Y.2
  • 14
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on Platt's probabilistic outputs for support vector machines. Machine Learning, 68:267-276, 2007.
    • (2007) Machine Learning , vol.68 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3
  • 15
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-instance learning for natural scene classification
    • O. Maron and A. L. Ratan. Multiple-instance learning for natural scene classification. In ICML, 1998.
    • (1998) ICML
    • Maron, O.1    Ratan, A.L.2
  • 16
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 17
    • 0031139628 scopus 로고    scopus 로고
    • Local grayvalue invariants for image retrieval
    • C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE TPAMI, 19(5):530-535, 1997.
    • (1997) IEEE TPAMI , vol.19 , Issue.5 , pp. 530-535
    • Schmid, C.1    Mohr, R.2
  • 19
    • 56449086489 scopus 로고    scopus 로고
    • Adaptive p-posterior mixture model kernels for multiple instance learning
    • H.-Y. Wang, Q. Yang, and H. Zha. Adaptive p-posterior mixture model kernels for multiple instance learning. In ICML, pages 1136-1143, 2008.
    • (2008) ICML , pp. 1136-1143
    • Wang, H.-Y.1    Yang, Q.2    Zha, H.3
  • 20
    • 84898999828 scopus 로고    scopus 로고
    • EM-DD: An improved multiple-instance learning technique
    • Q. Zhang and S. A. Goldman. EM-DD: An improved multiple-instance learning technique. In NIPS, 2002.
    • (2002) NIPS
    • Zhang, Q.1    Goldman, S.A.2
  • 21
    • 71149085943 scopus 로고    scopus 로고
    • Multi-instance learning by treating instances as non-i.i.d. samples
    • Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li. Multi-instance learning by treating instances as non-i.i.d. samples. In ICML, 2009.
    • (2009) ICML
    • Zhou, Z.-H.1    Sun, Y.-Y.2    Li, Y.-F.3
  • 22
    • 34547984757 scopus 로고    scopus 로고
    • On the relation between multiple-instance learning and semi-supervised learning
    • Z.-H. Zhou and J.-M. Xu. On the relation between multiple-instance learning and semi-supervised learning. In ICML, pages 1167-1174, 2007.
    • (2007) ICML , pp. 1167-1174
    • Zhou, Z.-H.1    Xu, J.-M.2
  • 23
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In NIPS, pages 1609-1616, 2006.
    • (2006) NIPS , pp. 1609-1616
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.