메뉴 건너뛰기




Volumn 13, Issue 2, 2010, Pages 327-345

Stability implications of delay distribution for first-order and second-order systems

Author keywords

Differential equations; Distributed delay; Hybrid testing

Indexed keywords


EID: 77951101757     PISSN: 15313492     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcdsb.2010.13.327     Document Type: Article
Times cited : (17)

References (27)
  • 1
    • 70349976355 scopus 로고    scopus 로고
    • Delayed feedback control near Hopf bifurcation
    • F. M. Atay, Delayed feedback control near Hopf bifurcation, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 197-205.
    • (2008) Discrete Contin. Dyn. Syst. Ser. S , vol.1 , pp. 197-205
    • Atay, F.M.1
  • 2
    • 0009677529 scopus 로고    scopus 로고
    • Sufficient conditions for stability of linear differential equations with distributed delay
    • S. Bernard, J. Bélair and M. C. Mackey, Sufficient conditions for stability of linear differential equations with distributed delay, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 233-256.
    • (2001) Discrete Contin. Dyn. Syst. Ser. B , vol.1 , pp. 233-256
    • Bernard, S.1    Bélair, J.2    Mackey, M.C.3
  • 3
    • 85024577148 scopus 로고
    • Stability charts for second-order dynamical systems with time leg
    • March
    • S. J. Bhatt and C. S. Hsu, Stability charts for second-order dynamical systems with time leg, Journal of Applied Mechanics, March (1966), 119-124.
    • (1966) Journal of Applied Mechanics , pp. 119-124
    • Bhatt, S.J.1    Hsu, C.S.2
  • 5
    • 34548139371 scopus 로고    scopus 로고
    • Time delays in neural systems, in
    • eds. V. K. Jirsa and A. R. Mcintosh, Springer-Verlag
    • S. A. Campbell, Time delays in neural systems, in "Handbook of Brain Connectivity" (eds. V. K. Jirsa and A. R. Mcintosh), Springer-Verlag, (2007), 65-90.
    • (2007) Handbook of Brain Connectivity , pp. 65-90
    • Campbell, S.A.1
  • 6
    • 77951135044 scopus 로고    scopus 로고
    • Approximating the stability region for a differential equation with distributed delay
    • S. A. Campbell and R. Jessop, Approximating the stability region for a differential equation with distributed delay, Math. Model. Nat. Phenom., 4 (2009), 1-27
    • (2009) Math. Model. Nat. Phenom. , vol.4 , pp. 1-27
    • Campbell, S.A.1    Jessop, R.2
  • 7
    • 84867969858 scopus 로고    scopus 로고
    • Stability and bifurcation analysis of a nonlinear DDE model for drilling
    • S. A. Campbell and E. Stone, Stability and bifurcation analysis of a nonlinear DDE model for drilling, J. Comput. Nonlinear Dynam., 1 (2004), 27-57.
    • (2004) J. Comput. Nonlinear Dynam. , vol.1 , pp. 27-57
    • Campbell, S.A.1    Stone, E.2
  • 8
    • 0003196710 scopus 로고
    • Integrodifferential equations and delay models in population dynamics
    • Springer-Verlag, Berlin
    • J. M. Cushing, "Integrodifferential Equations and Delay Models in Population Dynamics, " Springer-Verlag, Berlin, 1977. Lecture Notes in Biomathematics, Vol. 20.
    • (1977) Lecture Notes in Biomathematics , vol.20
    • Cushing, J.M.1
  • 11
    • 24744452843 scopus 로고    scopus 로고
    • On stability crossing curves for general systems with two delays
    • K. Gu, S. Niculescu and K. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 311 (2005), 231-253.
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 231-253
    • Gu, K.1    Niculescu, S.2    Chen, K.3
  • 12
    • 0003346959 scopus 로고
    • Theory of functional differential equations
    • Springer-Verlag, New York, second edition
    • J. K. Hale, "Theory of Functional Differential Equations, " Springer-Verlag, New York, second edition, 1977, Applied Mathematical Sciences, Vol. 3.
    • (1977) Applied Mathematical Sciences , vol.3
    • Hale, J.K.1
  • 15
    • 84960560867 scopus 로고
    • Roots of the transcendental equation associated with a certain differencedifferential equation
    • N. D. Hayes, Roots of the transcendental equation associated with a certain differencedifferential equation, J. London Math. Soc, 25 (1950), 226-232.
    • (1950) J. London Math. Soc. , vol.25 , pp. 226-232
    • Hayes, N.D.1
  • 18
    • 84972550936 scopus 로고
    • Stability for functional differential equations and some variational problems
    • T. Krisztin, Stability for functional differential equations and some variational problems, Tôhoku Mathematical Journal, 42 (1990), 407-417.
    • (1990) Tôhoku Mathematical Journal , vol.42 , pp. 407-417
    • Krisztin, T.1
  • 19
    • 0003302813 scopus 로고
    • Delay differential equations with applications in population dynamics
    • Academic Press Inc., Boston, MA
    • Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics, " Academic Press Inc., Boston, MA, 1993. Mathematics in Science and Engineering, Vol 191.
    • (1993) Mathematics in Science and Engineering , vol.191
    • Kuang, Y.1
  • 20
    • 0028041707 scopus 로고
    • Nonoccurrence of stability switching in systems of differential equations with distributed delays
    • Y. Kuang, Nonoccurrence of stability switching in systems of differential equations with distributed delays, Quaterly of Applied Mathematics, LII (1994), 569-578.
    • (1994) Quaterly of Applied Mathematics , vol.52 , pp. 569-578
    • Kuang, Y.1
  • 23
    • 33749518548 scopus 로고    scopus 로고
    • Characteristic equation and asymptotic behavior of delay-differential equation
    • R. Miyazaki, Characteristic equation and asymptotic behavior of delay-differential equation, Funkcialaj Ekvacioj, 40 (1997), 471-481.
    • (1997) Funkcialaj Ekvacioj , vol.40 , pp. 471-481
    • Miyazaki, R.1
  • 24
    • 84892279136 scopus 로고    scopus 로고
    • Continuation and bifurcation analysis of delay differential equations
    • eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque Springer
    • D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations, in "Numerical Continuation Methods for Dynamical Systems" (eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque) Springer, (2007), 359-399.
    • (2007) Numerical Continuation Methods for Dynamical Systems , pp. 359-399
    • Roose, D.1    Szalai, R.2
  • 26
    • 84867969858 scopus 로고    scopus 로고
    • Stability and bifurcation analysis of a nonlinear DDE model for drilling
    • E. Stone and S. A. Campbell, Stability and bifurcation analysis of a nonlinear DDE model for drilling, J. Nonlinear Sci. 14 (2004), 27-57.
    • (2004) J. Nonlinear Sci. , vol.14 , pp. 27-57
    • Stone, E.1    Campbell, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.