-
1
-
-
70349976355
-
Delayed feedback control near Hopf bifurcation
-
F. M. Atay, Delayed feedback control near Hopf bifurcation, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 197-205.
-
(2008)
Discrete Contin. Dyn. Syst. Ser. S
, vol.1
, pp. 197-205
-
-
Atay, F.M.1
-
2
-
-
0009677529
-
Sufficient conditions for stability of linear differential equations with distributed delay
-
S. Bernard, J. Bélair and M. C. Mackey, Sufficient conditions for stability of linear differential equations with distributed delay, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 233-256.
-
(2001)
Discrete Contin. Dyn. Syst. Ser. B
, vol.1
, pp. 233-256
-
-
Bernard, S.1
Bélair, J.2
Mackey, M.C.3
-
3
-
-
85024577148
-
Stability charts for second-order dynamical systems with time leg
-
March
-
S. J. Bhatt and C. S. Hsu, Stability charts for second-order dynamical systems with time leg, Journal of Applied Mechanics, March (1966), 119-124.
-
(1966)
Journal of Applied Mechanics
, pp. 119-124
-
-
Bhatt, S.J.1
Hsu, C.S.2
-
4
-
-
40249101742
-
Novel coupling rosenbrock-based algorithms for real-time dynamic substructure testing
-
O. S. Bursi, A. Gonzalez-Buelga, L. Vulcan, S. A. Neild and D. J. Wagg, Novel coupling rosenbrock-based algorithms for real-time dynamic substructure testing, Earthquake Engineering and Structural Dynamics, 37 (2008), 339-360.
-
(2008)
Earthquake Engineering and Structural Dynamics
, vol.37
, pp. 339-360
-
-
Bursi, O.S.1
Gonzalez-Buelga, A.2
Vulcan, L.3
Neild, S.A.4
Wagg, D.J.5
-
5
-
-
34548139371
-
Time delays in neural systems, in
-
eds. V. K. Jirsa and A. R. Mcintosh, Springer-Verlag
-
S. A. Campbell, Time delays in neural systems, in "Handbook of Brain Connectivity" (eds. V. K. Jirsa and A. R. Mcintosh), Springer-Verlag, (2007), 65-90.
-
(2007)
Handbook of Brain Connectivity
, pp. 65-90
-
-
Campbell, S.A.1
-
6
-
-
77951135044
-
Approximating the stability region for a differential equation with distributed delay
-
S. A. Campbell and R. Jessop, Approximating the stability region for a differential equation with distributed delay, Math. Model. Nat. Phenom., 4 (2009), 1-27
-
(2009)
Math. Model. Nat. Phenom.
, vol.4
, pp. 1-27
-
-
Campbell, S.A.1
Jessop, R.2
-
7
-
-
84867969858
-
Stability and bifurcation analysis of a nonlinear DDE model for drilling
-
S. A. Campbell and E. Stone, Stability and bifurcation analysis of a nonlinear DDE model for drilling, J. Comput. Nonlinear Dynam., 1 (2004), 27-57.
-
(2004)
J. Comput. Nonlinear Dynam.
, vol.1
, pp. 27-57
-
-
Campbell, S.A.1
Stone, E.2
-
8
-
-
0003196710
-
Integrodifferential equations and delay models in population dynamics
-
Springer-Verlag, Berlin
-
J. M. Cushing, "Integrodifferential Equations and Delay Models in Population Dynamics, " Springer-Verlag, Berlin, 1977. Lecture Notes in Biomathematics, Vol. 20.
-
(1977)
Lecture Notes in Biomathematics
, vol.20
-
-
Cushing, J.M.1
-
10
-
-
70349847725
-
Causality in real-time dynamic substructure testing
-
P. J. Gawthrop, S. A. Neild, A. Gonzalez-Buelga and D. J. Wagg, Causality in real-time dynamic substructure testing, Mechatronics, 19 (2008), 1105-1115.
-
(2008)
Mechatronics
, vol.19
, pp. 1105-1115
-
-
Gawthrop, P.J.1
Neild, S.A.2
Gonzalez-Buelga, A.3
Wagg, D.J.4
-
11
-
-
24744452843
-
On stability crossing curves for general systems with two delays
-
K. Gu, S. Niculescu and K. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 311 (2005), 231-253.
-
(2005)
J. Math. Anal. Appl.
, vol.311
, pp. 231-253
-
-
Gu, K.1
Niculescu, S.2
Chen, K.3
-
12
-
-
0003346959
-
Theory of functional differential equations
-
Springer-Verlag, New York, second edition
-
J. K. Hale, "Theory of Functional Differential Equations, " Springer-Verlag, New York, second edition, 1977, Applied Mathematical Sciences, Vol. 3.
-
(1977)
Applied Mathematical Sciences
, vol.3
-
-
Hale, J.K.1
-
14
-
-
0034697629
-
Modeling complex neutrophil dynamics in the grey collie
-
C. Haurie, D. C. Dale, R. Rudnicki and M. C. Mackey, Modeling complex neutrophil dynamics in the grey collie, Journal of Theoretical Biology, 204 (2000), 505-519.
-
(2000)
Journal of Theoretical Biology
, vol.204
, pp. 505-519
-
-
Haurie, C.1
Dale, D.C.2
Rudnicki, R.3
Mackey, M.C.4
-
15
-
-
84960560867
-
Roots of the transcendental equation associated with a certain differencedifferential equation
-
N. D. Hayes, Roots of the transcendental equation associated with a certain differencedifferential equation, J. London Math. Soc, 25 (1950), 226-232.
-
(1950)
J. London Math. Soc.
, vol.25
, pp. 226-232
-
-
Hayes, N.D.1
-
18
-
-
84972550936
-
Stability for functional differential equations and some variational problems
-
T. Krisztin, Stability for functional differential equations and some variational problems, Tôhoku Mathematical Journal, 42 (1990), 407-417.
-
(1990)
Tôhoku Mathematical Journal
, vol.42
, pp. 407-417
-
-
Krisztin, T.1
-
19
-
-
0003302813
-
Delay differential equations with applications in population dynamics
-
Academic Press Inc., Boston, MA
-
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics, " Academic Press Inc., Boston, MA, 1993. Mathematics in Science and Engineering, Vol 191.
-
(1993)
Mathematics in Science and Engineering
, vol.191
-
-
Kuang, Y.1
-
20
-
-
0028041707
-
Nonoccurrence of stability switching in systems of differential equations with distributed delays
-
Y. Kuang, Nonoccurrence of stability switching in systems of differential equations with distributed delays, Quaterly of Applied Mathematics, LII (1994), 569-578.
-
(1994)
Quaterly of Applied Mathematics
, vol.52
, pp. 569-578
-
-
Kuang, Y.1
-
21
-
-
36348990853
-
Modelling rod-time dynamic substructuring using partial delay differential equations
-
Y. N. Kyrychko, S. J. Hogan, A. Gonzalez-Buelga and D. J. Wagg, Modelling rod-time dynamic substructuring using partial delay differential equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 1509-1523.
-
(2007)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.463
, pp. 1509-1523
-
-
Kyrychko, Y.N.1
Hogan, S.J.2
Gonzalez-Buelga, A.3
Wagg, D.J.4
-
22
-
-
33749315632
-
Real-time dynamic substructuring in a coupled oscillator-pendulum system
-
Y. N. Kyrychko, K. B. Blyuss, A. Gonzalez-Buelga, S. J. Hogan and D. J. Wagg, Real-time dynamic substructuring in a coupled oscillator-pendulum system, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 1271-1294.
-
(2006)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.462
, pp. 1271-1294
-
-
Kyrychko, Y.N.1
Blyuss, K.B.2
Gonzalez-Buelga, A.3
Hogan, S.J.4
Wagg, D.J.5
-
23
-
-
33749518548
-
Characteristic equation and asymptotic behavior of delay-differential equation
-
R. Miyazaki, Characteristic equation and asymptotic behavior of delay-differential equation, Funkcialaj Ekvacioj, 40 (1997), 471-481.
-
(1997)
Funkcialaj Ekvacioj
, vol.40
, pp. 471-481
-
-
Miyazaki, R.1
-
24
-
-
84892279136
-
Continuation and bifurcation analysis of delay differential equations
-
eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque Springer
-
D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations, in "Numerical Continuation Methods for Dynamical Systems" (eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque) Springer, (2007), 359-399.
-
(2007)
Numerical Continuation Methods for Dynamical Systems
, pp. 359-399
-
-
Roose, D.1
Szalai, R.2
-
26
-
-
84867969858
-
Stability and bifurcation analysis of a nonlinear DDE model for drilling
-
E. Stone and S. A. Campbell, Stability and bifurcation analysis of a nonlinear DDE model for drilling, J. Nonlinear Sci. 14 (2004), 27-57.
-
(2004)
J. Nonlinear Sci.
, vol.14
, pp. 27-57
-
-
Stone, E.1
Campbell, S.A.2
-
27
-
-
28544451557
-
Stability analysis of real-time dynamic substructuring using delay differential equation models
-
M. I. Wallace, J. Sieber, A. Neild, D. J. Wagg and B. Krauskopf, Stability analysis of real-time dynamic substructuring using delay differential equation models, Earthquake Engineering and Structural Dynamics, 34 (2005), 1817-1832.
-
(2005)
Earthquake Engineering and Structural Dynamics
, vol.34
, pp. 1817-1832
-
-
Wallace, M.I.1
Sieber, J.2
Neild, A.3
Wagg, D.J.4
Krauskopf, B.5
|