-
1
-
-
24344475745
-
A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia
-
DOI 10.1137/040604698
-
M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), 1328-1352. (Pubitemid 41343748)
-
(2005)
SIAM Journal on Applied Mathematics
, vol.65
, Issue.4
, pp. 1328-1352
-
-
Adimy, M.1
Crauste, F.2
Ruan, S.3
-
2
-
-
15844377066
-
Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics
-
DOI 10.1016/j.nonrwa.2004.12.010, PII S1468121804001208, Modelling, Analysis, and Theory of Dynamic Populations
-
M. Adimy, F. Crauste, S. Ruan. Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonl. Anal.: Real World Appl., 6 (2005), 651-670. (Pubitemid 40420740)
-
(2005)
Nonlinear Analysis: Real World Applications
, vol.6
, Issue.4
, pp. 651-670
-
-
Adimy, M.1
Crauste, F.2
Ruan, S.3
-
3
-
-
77952669436
-
Time delays in epidemic models: Modeling and numerical considerations
-
chapter 13, Springer, Dordrecht
-
J. Arino, P. van den Driessche. Time delays in epidemic models: modeling and numerical considerations, in Delay differential equations and applications, chapter 13, 539-558. Springer, Dordrecht, 2006.
-
(2006)
Delay Differential Equations and Applications
, pp. 539-558
-
-
Arino, J.1
Van Den Driessche, P.2
-
4
-
-
9744234606
-
Distributed delays facilitate amplitude death of coupled oscillators
-
F.M. Atay. Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett., 91 (2003), 094101.
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 094101
-
-
Atay, F.M.1
-
5
-
-
30344466094
-
Oscillator death in coupled functional differential equations near Hopf bifurcation
-
DOI 10.1016/j.jde.2005.01.007, PII S0022039605000331
-
F.M. Atay. Oscillator death in coupled functional differential equations near Hopf bifurcation. J. Diff. Eqs., 221 (2006), 190-209. (Pubitemid 43056755)
-
(2006)
Journal of Differential Equations
, vol.221
, Issue.1
, pp. 190-209
-
-
Atay, F.M.1
-
6
-
-
70349976355
-
Delayed feedback control near Hopf bifurcation
-
F.M. Atay. Delayed feedback control near Hopf bifurcation. DCDS, 1 (2008), 197-205.
-
(2008)
DCDS
, vol.1
, pp. 197-205
-
-
Atay, F.M.1
-
7
-
-
0009677529
-
Sufficient conditions for stability of linear differential equations with distributed delay
-
S. Bernard, J. Bélair, M.C. Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. DCDS, 1B (2001), 233-256. (Pubitemid 33771907)
-
(2001)
Discrete and Continuous Dynamical Systems - Series B
, vol.1
, Issue.2
, pp. 233-256
-
-
Bernard, S.1
Belair, J.2
Mackey, M.G.3
-
10
-
-
0036754107
-
Global stability of neural networks with distributed delays
-
DOI 10.1016/S0893-6080(02)00039-4, PII S0893608002000394
-
Y. Chen. Global stability of neural networks with distributed delays. Neur. Net., 15 (2002), 867-871. (Pubitemid 35303333)
-
(2002)
Neural Networks
, vol.15
, Issue.7
, pp. 867-871
-
-
Chen, Y.1
-
11
-
-
33846426308
-
Global asymptotic stability of delayed Cohen-Grossberg neural networks
-
DOI 10.1109/TCSI.2005.856047
-
Y. Chen. Global stability of delayed Cohen-Grossberg neural networks. IEEE Trans. Circuits Syst.-I, 53 (2006), 351-357. (Pubitemid 46395411)
-
(2006)
IEEE Transactions on Circuits and Systems I: Regular Papers
, vol.53
, Issue.2
, pp. 351-357
-
-
Chen, Y.1
-
13
-
-
0000209631
-
Discrete delay, distributed delay and stability switches
-
K.L. Cooke, Z. Grossman. Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl., 86 (1982), 592-627.
-
(1982)
J. Math. Anal. Appl.
, vol.86
, pp. 592-627
-
-
Cooke, K.L.1
Grossman, Z.2
-
14
-
-
0003196710
-
Integrodifferential equations and delay models in population dynamics
-
Springer-Verlag, Berlin, New York
-
J.M. Cushing. Integrodifferential equations and delay models in population dynamics, Vol. 20 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, New York, 1977.
-
(1977)
Lecture Notes in Biomathematics
, vol.20
-
-
Cushing, J.M.1
-
15
-
-
38549148451
-
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks
-
T. Faria, J.J. Oliveira. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. J. Diff. Eqs., 244 (2008), 1049-1079.
-
(2008)
J. Diff. Eqs.
, vol.244
, pp. 1049-1079
-
-
Faria, T.1
Oliveira, J.J.2
-
17
-
-
0001075269
-
Stability in asymmetric Hopfield nets with transmission delays
-
K. Gopalsamy and X.-Z. He. Stability in asymmetric Hopfield nets with transmission delays. Physica D, 76 (1994), 344-358.
-
(1994)
Physica D
, vol.76
, pp. 344-358
-
-
Gopalsamy, K.1
He, X.-Z.2
-
19
-
-
33645084765
-
Circular cause systems in ecology
-
G.E. Hutchinson. Circular cause systems in ecology. Ann. N.Y. Acad. Sci., 50 (1948), 221-246.
-
(1948)
Ann. N.Y. Acad. Sci.
, vol.50
, pp. 221-246
-
-
Hutchinson, G.E.1
-
20
-
-
19444371087
-
Will a large complex system with delays be stable?
-
V.K. Jirsa, M. Ding. Will a large complex system with delays be stable?. Phys. Rev. Lett., 93 (2004), 070602.
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 070602
-
-
Jirsa, V.K.1
Ding, M.2
-
22
-
-
0003302813
-
Delay differential equations: With applications in population dynamics
-
Academic Press, New York
-
Y. Kuang. Delay differential equations: with applications in population dynamics, Vol. 191 of Mathematics in Science and Engineering. Academic Press, New York, 1993.
-
(1993)
Mathematics in Science and Engineering
, vol.191
-
-
Kuang, Y.1
-
23
-
-
0035254276
-
Bifurcation analysis on a two-neuron system with distributed delays
-
DOI 10.1016/S0167-2789(00)00197-4
-
X. Liao, K.-W. Wong, Z. Wu. Bifurcation analysis on a two-neuron system with distributed delays. Physica D, 149 (2001), 123-141. (Pubitemid 32086768)
-
(2001)
Physica D: Nonlinear Phenomena
, vol.149
, Issue.1-2
, pp. 123-141
-
-
Liao, X.1
Wong, K.-W.2
Wu, Z.3
-
24
-
-
0003289006
-
Time lags in biological models
-
Springer-Verlag, Berlin; New York
-
N. MacDonald. Time lags in biological models, Vol. 27 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin; New York, 1978.
-
(1978)
Lecture Notes in Biomathematics
, vol.27
-
-
MacDonald, N.1
-
26
-
-
0021140794
-
The dynamics of recurrent inhibition
-
M.C. Mackey, U. an der Heiden. The dynamics of recurrent inhibition. J. Math. Biol., 19 (1984), 211-225.
-
(1984)
J. Math. Biol.
, vol.19
, pp. 211-225
-
-
MacKey, M.C.1
Van Der Heiden, U.2
-
28
-
-
34248517099
-
Delay differential equations for single species dynamics
-
chapter 11, Springer, Dordrecht
-
S. Ruan. Delay differential equations for single species dynamics, in Delay differential equations and applications, chapter 11, 477-515. Springer, Dordrecht, 2006.
-
(2006)
Delay Differential Equations and Applications
, pp. 477-515
-
-
Ruan, S.1
-
29
-
-
1842635257
-
Dynamics of a two-neuron system with discrete and distributed delays
-
S. Ruan, R.S. Filfil. Dynamics of a two-neuron system with discrete and distributed delays. Physica D, 191 (2004), 323-342.
-
(2004)
Physica D
, vol.191
, pp. 323-342
-
-
Ruan, S.1
Filfil, R.S.2
-
30
-
-
2142762704
-
Complex dynamics is abolished in delayed recurrent systems with distributed feedback times
-
A. Thiel, H. Schwegler, C.W. Eurich. Complex dynamics is abolished in delayed recurrent systems with distributed feedback times. Complexity, 8 (2003), 102-108.
-
(2003)
Complexity
, vol.8
, pp. 102-108
-
-
Thiel, A.1
Schwegler, H.2
Eurich, C.W.3
-
31
-
-
0031258276
-
Competition in the chemostat: A distributed delay model and its global asymptotic behavior
-
PII S0036139995289842
-
G.S.K.Wolkowicz, H. Xia, S. Ruan. Competition in the chemostat: A distributed delay model and its global asymptotic behaviour. SIAM J. Appl. Math., 57 (1997), 1281-1310. (Pubitemid 127631484)
-
(1997)
SIAM Journal on Applied Mathematics
, vol.57
, Issue.5
, pp. 1281-1310
-
-
Wolkowicz, G.S.K.1
Xia, H.2
Ruan, S.3
-
32
-
-
0011689727
-
Global dynamics of a chemostat competition model with distributed delay
-
G.S.K. Wolkowicz, H. Xia, J. Wu. Global dynamics of a chemostat competition model with distributed delay. J. Math. Biol., 38 (1999), 285-316.
-
(1999)
J. Math. Biol.
, vol.38
, pp. 285-316
-
-
Wolkowicz, G.S.K.1
Xia, H.2
Wu, J.3
-
33
-
-
39649098899
-
Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks
-
P. Yan. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. J. Theoret. Biol., 251 (2008), 238-252.
-
(2008)
J. Theoret. Biol.
, vol.251
, pp. 238-252
-
-
Yan, P.1
|