메뉴 건너뛰기




Volumn 81, Issue 3, 2010, Pages

Stochastic load-redistribution model for cascading failure propagation

Author keywords

[No Author keywords available]

Indexed keywords

BRANCHING PROCESS; CASCADING FAILURES; INTERCONNECTED SYSTEMS; LARGE SYSTEM SIZE; PHYSICAL CHARACTERISTICS; PROBABILISTIC MODELS; PROPAGATION PROPERTIES; STOCHASTIC LOADS;

EID: 77950445858     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.81.031129     Document Type: Article
Times cited : (58)

References (18)
  • 1
    • 41349094978 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.66.065102
    • A. E. Motter and Y. C. Lai, Phys. Rev. E 66, 065102 (R) (2002). 10.1103/PhysRevE.66.065102
    • (2002) Phys. Rev. e , vol.66 , pp. 065102
    • Motter, A.E.1    Lai, Y.C.2
  • 10
    • 53449097050 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.78.036116
    • L. Huang, Y.-C. Lai, and G. Chen, Phys. Rev. E 78, 036116 (2008). 10.1103/PhysRevE.78.036116
    • (2008) Phys. Rev. e , vol.78 , pp. 036116
    • Huang, L.1    Lai, Y.-C.2    Chen, G.3
  • 14
    • 0004010598 scopus 로고
    • Die Grundlehren der Mathematischen Wissenschaften, Vol. Springer, Berlin
    • T. E. Harris, The Theory of Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, Vol. 119 (Springer, Berlin, 1963).
    • (1963) The Theory of Branching Processes , vol.119
    • Harris, T.E.1
  • 15
    • 0344033604 scopus 로고    scopus 로고
    • 10.1109/TPWRS.2003.818723
    • R. Baldick, IEEE Trans. Power Syst. 18, 1316 (2003). 10.1109/TPWRS.2003. 818723
    • (2003) IEEE Trans. Power Syst. , vol.18 , pp. 1316
    • Baldick, R.1
  • 16
    • 77950431133 scopus 로고    scopus 로고
    • Note that, in general, the distribution of the load-redistribution factors Δ will change as the number of intact elements decreases. How to take into account this finite-size effect depends on the system considered. In model below, we keep Δ0 fixed and adjust p0 =1/ [ ( Nnf -1 ) Δ0 ], where Nnf is the number of intact elements before the new failure.
    • Note that, in general, the distribution of the load-redistribution factors Δ will change as the number of intact elements decreases. How to take into account this finite-size effect depends on the system considered. In model below, we keep Δ 0 fixed and adjust p 0 = 1 / [(N nf - 1) Δ 0], where N nf is the number of intact elements before the new failure.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.