-
1
-
-
3043006968
-
Solitons and discrete eigenfunctions of the recursion operator of non-linear evolution equations: the Caudrey-Dodd-Gibbon-Sawada-Kotera equations
-
Aiyer R.N., Fuchssteiner B., and Oevel W. Solitons and discrete eigenfunctions of the recursion operator of non-linear evolution equations: the Caudrey-Dodd-Gibbon-Sawada-Kotera equations. J. Phys. A: Math. General 19 (1986) 3755-3770
-
(1986)
J. Phys. A: Math. General
, vol.19
, pp. 3755-3770
-
-
Aiyer, R.N.1
Fuchssteiner, B.2
Oevel, W.3
-
2
-
-
33344462593
-
Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method
-
Wazwaz A.M. Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method. Appl. Math. Comput. 174 (2006) 289-299
-
(2006)
Appl. Math. Comput.
, vol.174
, pp. 289-299
-
-
Wazwaz, A.M.1
-
3
-
-
39449088871
-
Multiple-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) equation
-
Wazwaz A.M. Multiple-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) equation. Appl. Math. Comput. 197 (2008) 719-724
-
(2008)
Appl. Math. Comput.
, vol.197
, pp. 719-724
-
-
Wazwaz, A.M.1
-
4
-
-
0002682063
-
On quasi-periodic solutions of the 2 + 1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation
-
Cao C.W., Wu Y.T., and Geng X.G. On quasi-periodic solutions of the 2 + 1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Phys. Lett. A 256 (1999) 59-65
-
(1999)
Phys. Lett. A
, vol.256
, pp. 59-65
-
-
Cao, C.W.1
Wu, Y.T.2
Geng, X.G.3
-
5
-
-
0002150506
-
Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation
-
Lou S.Y. Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Phys. Lett. A 175 (1993) 23-26
-
(1993)
Phys. Lett. A
, vol.175
, pp. 23-26
-
-
Lou, S.Y.1
-
6
-
-
33746584753
-
New interpretation of homotopy perturbation method
-
He J.H. New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20 (2006) 2561-2568
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, pp. 2561-2568
-
-
He, J.H.1
-
7
-
-
34249893388
-
Approximate solutions of K (2,2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method
-
Tari H., Ganji D.D., and Rostamian M. Approximate solutions of K (2,2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method. Int. J. Nonlin. Sci. Num. 8 (2007) 203-210
-
(2007)
Int. J. Nonlin. Sci. Num.
, vol.8
, pp. 203-210
-
-
Tari, H.1
Ganji, D.D.2
Rostamian, M.3
-
8
-
-
34249884542
-
Traveling wave solution of Korteweg-de Vries equation using He's homotopy perturbation method
-
Ozis T., and Yildirim A. Traveling wave solution of Korteweg-de Vries equation using He's homotopy perturbation method. Int. J. Nonlin. Sci. Num. 8 (2007) 239-242
-
(2007)
Int. J. Nonlin. Sci. Num.
, vol.8
, pp. 239-242
-
-
Ozis, T.1
Yildirim, A.2
-
9
-
-
34548570369
-
Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods
-
Sadighi A., and Ganji D.D. Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods. Int. J. Nonlin. Sci. Num. 8 (2007) 435-443
-
(2007)
Int. J. Nonlin. Sci. Num.
, vol.8
, pp. 435-443
-
-
Sadighi, A.1
Ganji, D.D.2
-
10
-
-
40649100751
-
A study on linear and nonlinear Schrodinger equations by the variational iteration method
-
Wazwaz A.M. A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos Solitons Fractals 37 (2008) 1136-1142
-
(2008)
Chaos Solitons Fractals
, vol.37
, pp. 1136-1142
-
-
Wazwaz, A.M.1
-
11
-
-
35448980713
-
The variational iteration method for a reliable treatment of the linear and the nonlinear Goursat problem
-
Wazwaz A.M. The variational iteration method for a reliable treatment of the linear and the nonlinear Goursat problem. Appl. Math. Comput. 193 (2007) 455-462
-
(2007)
Appl. Math. Comput.
, vol.193
, pp. 455-462
-
-
Wazwaz, A.M.1
-
12
-
-
34748859114
-
The variational iteration method for solving linear and nonlinear systems of PDEs
-
Wazwaz A.M. The variational iteration method for solving linear and nonlinear systems of PDEs. Comput. Math. Appl. 54 (2007) 895-902
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 895-902
-
-
Wazwaz, A.M.1
-
13
-
-
34748905912
-
The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations
-
Wazwaz A.M. The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. Appl. 54 (2007) 926-932
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 926-932
-
-
Wazwaz, A.M.1
-
14
-
-
34748870677
-
Variational iteration method: New development and applications
-
He J.H., and Wu X.H. Variational iteration method: New development and applications. Comput. Math. Appl. 54 (2007) 881-894
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 881-894
-
-
He, J.H.1
Wu, X.H.2
-
15
-
-
34250668369
-
Variational iteration method - Some recent results and new interpretations
-
He J.H. Variational iteration method - Some recent results and new interpretations. J. Comput. Appl. Math. 207 (2007) 3-17
-
(2007)
J. Comput. Appl. Math.
, vol.207
, pp. 3-17
-
-
He, J.H.1
-
16
-
-
30344475545
-
Construction of solitary solution and compacton-like solution by variational iteration method
-
He J.H., and Wu X.H. Construction of solitary solution and compacton-like solution by variational iteration method. Chaos Solitons Fractals 29 (2006) 108-113
-
(2006)
Chaos Solitons Fractals
, vol.29
, pp. 108-113
-
-
He, J.H.1
Wu, X.H.2
-
17
-
-
30344464250
-
Application of variational iteration method to Nonlinear differential equations of fractional order
-
Odibat Z.M., and Momani S. Application of variational iteration method to Nonlinear differential equations of fractional order. Int. J. Nonlin. Sci. Num. 7 (2006) 27-36
-
(2006)
Int. J. Nonlin. Sci. Num.
, vol.7
, pp. 27-36
-
-
Odibat, Z.M.1
Momani, S.2
-
18
-
-
38349098798
-
Variational approach to the inviscid compressible fluid
-
Tao Z.L. Variational approach to the inviscid compressible fluid. Acta Appl. Math. 100 (2008) 291-294
-
(2008)
Acta Appl. Math.
, vol.100
, pp. 291-294
-
-
Tao, Z.L.1
-
19
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
He J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20 (2006) 1141-1199
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, pp. 1141-1199
-
-
He, J.H.1
-
20
-
-
33745177020
-
Exp-function method for nonlinear wave equations
-
He J.H., and Wu X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30 (2006) 700-708
-
(2006)
Chaos Solitons Fractals
, vol.30
, pp. 700-708
-
-
He, J.H.1
Wu, X.H.2
-
21
-
-
34748862326
-
Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method
-
Benn Wu X.H., and He J.H. Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method. Comput. Math. Appl. 54 (2007) 966-986
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 966-986
-
-
Benn Wu, X.H.1
He, J.H.2
-
22
-
-
38649132547
-
Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the exp-function method
-
He J.H., and Zhang L.N. Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the exp-function method. Phys. Lett. A 372 (2008) 1044-1047
-
(2008)
Phys. Lett. A
, vol.372
, pp. 1044-1047
-
-
He, J.H.1
Zhang, L.N.2
-
23
-
-
34250163508
-
New periodic solutions for nonlinear evolution equations using exp-function method
-
He J.H., and Abdou M.A. New periodic solutions for nonlinear evolution equations using exp-function method. Chaos Solitons Fractals 34 (2007) 1421-1429
-
(2007)
Chaos Solitons Fractals
, vol.34
, pp. 1421-1429
-
-
He, J.H.1
Abdou, M.A.2
-
24
-
-
43049083734
-
Exp-function method and its application to nonlinear equations
-
(Benn) Wu X.H., and He J.H. Exp-function method and its application to nonlinear equations. Chaos Solitons Fractals 38 (2008) 903-910
-
(2008)
Chaos Solitons Fractals
, vol.38
, pp. 903-910
-
-
(Benn) Wu, X.H.1
He, J.H.2
-
26
-
-
36248983300
-
Exact solutions for a class of nonlinear partial differential equations using exp-function method
-
Bekir A., and Boz A. Exact solutions for a class of nonlinear partial differential equations using exp-function method. Int. J. Nonlin. Sci. Num. 8 (2007) 505-512
-
(2007)
Int. J. Nonlin. Sci. Num.
, vol.8
, pp. 505-512
-
-
Bekir, A.1
Boz, A.2
-
27
-
-
43949107152
-
Exp-function method for solving Huxley Equation
-
Article ID 538489
-
Zhou X.W. Exp-function method for solving Huxley Equation. Math. Prob. Eng. 2008 (2008) Article ID 538489
-
(2008)
Math. Prob. Eng.
, vol.2008
-
-
Zhou, X.W.1
-
28
-
-
40549134152
-
Exp-function method for solving Fisher's Equation
-
Zhou X.W. Exp-function method for solving Fisher's Equation. J. Phys.: Confer. Series 96 (2008) 012063
-
(2008)
J. Phys.: Confer. Series
, vol.96
, pp. 012063
-
-
Zhou, X.W.1
-
29
-
-
47049104261
-
Exp-function method to solve the nonlinear dispersive K(m,n) equations
-
Zhou X.W., Wen Y.X., and He J.H. Exp-function method to solve the nonlinear dispersive K(m,n) equations. Int. J. Nonlin. Sci. Num. 9 (2008) 301-306
-
(2008)
Int. J. Nonlin. Sci. Num.
, vol.9
, pp. 301-306
-
-
Zhou, X.W.1
Wen, Y.X.2
He, J.H.3
-
30
-
-
34548577315
-
Exp-function method for the Hybrid-Lattice system
-
Zhu S.D. Exp-function method for the Hybrid-Lattice system. Int. J. Nonlin. Sci. Num. 8 (2007) 461-464
-
(2007)
Int. J. Nonlin. Sci. Num.
, vol.8
, pp. 461-464
-
-
Zhu, S.D.1
-
31
-
-
34548577316
-
Exp-function method for the discrete mKdV lattice
-
Zhu S.D. Exp-function method for the discrete mKdV lattice. Int. J. Nonlin. Sci. Num. 8 (2007) 465-468
-
(2007)
Int. J. Nonlin. Sci. Num.
, vol.8
, pp. 465-468
-
-
Zhu, S.D.1
-
32
-
-
50949112266
-
An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering
-
He J.H. An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys. B 22 (2008) 3487-3578
-
(2008)
Int. J. Mod. Phys. B
, vol.22
, pp. 3487-3578
-
-
He, J.H.1
|