메뉴 건너뛰기




Volumn 3697 LNCS, Issue , 2005, Pages 31-37

Monotonic multi-layer perceptron networks as universal approximators

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; CONSTRAINT THEORY; IDENTIFICATION (CONTROL SYSTEMS); IRON AND STEEL INDUSTRY; MATHEMATICAL MODELS;

EID: 33646246992     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: None     Document Type: Conference Paper
Times cited : (55)

References (9)
  • 2
    • 0029461592 scopus 로고
    • Multilayer perception training with inaccurate derivative information
    • Perth, West Australia
    • Lampinen, J., Selonen, A.: Multilayer perception training with inaccurate derivative information. In: Proc. IEEE International Conference on Neural Networks ICNN'95. Volume 5., Perth, West Australia (1995) 2811-2815
    • (1995) Proc. IEEE International Conference on Neural Networks ICNN'95 , vol.5 , pp. 2811-2815
    • Lampinen, J.1    Selonen, A.2
  • 6
    • 33646269610 scopus 로고    scopus 로고
    • Können neuronale netze monotones verhalten für bestimmte di mensionen garantieren?
    • Siemens AG, unpublished, Munich, Germany
    • Lang, B.: Können Neuronale Netze monotones Verhalten für bestimmte Dimensionen garantieren? Technical report, Siemens AG, unpublished, Munich, Germany (1999)
    • (1999) Technical Report
    • Lang, B.1
  • 8
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., and White, H.: Multilayer feedforward networks are universal approximators. Neural Networks, 2:359-366, (1989).
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.