-
2
-
-
77950082333
-
-
Unpublished manuscript. Columbia University, New York
-
Ansari, A., Vanhuele, M., & Zemborain, M. (2008). Heterogeneous multinomial processing tree models. Unpublished manuscript. Columbia University, New York.
-
(2008)
Heterogeneous Multinomial Processing Tree Models
-
-
Ansari, A.1
Vanhuele, M.2
Zemborain, M.3
-
3
-
-
0000764531
-
Logistic-normal distributions: Some properties and uses
-
Atchison, J., & Shen, S. M. (1980). Logistic-normal distributions: Some properties and uses. Biometrika, 67, 261-272.
-
(1980)
Biometrika
, vol.67
, pp. 261-272
-
-
Atchison, J.1
Shen, S.M.2
-
5
-
-
0033084954
-
Theoretical and empirical review of multinomial processing tree modeling
-
Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial processing tree modeling. Psychonomic Bulletin & Review, 6, 57-86.
-
(1999)
Psychonomic Bulletin & Review
, vol.6
, pp. 57-86
-
-
Batchelder, W.H.1
Riefer, D.M.2
-
6
-
-
34547702692
-
Using multinomial processing tree models to measure cognitive deficits in clinical populations
-
R. W. T. Neufeld (Ed.), Washington: American Psychological Association Books
-
Batchelder, W. H., & Riefer, D. M. (2007). Using multinomial processing tree models to measure cognitive deficits in clinical populations. In R. W. T. Neufeld (Ed.), Advances in clinical cognitive science: formal analysis of processes and symptoms (pp. 19-50). Washington: American Psychological Association Books.
-
(2007)
Advances in Clinical Cognitive Science: Formal Analysis of Processes and Symptoms
, pp. 19-50
-
-
Batchelder, W.H.1
Riefer, D.M.2
-
7
-
-
0003011165
-
Quantifying surprise in the data and model verification
-
Bayarri, M. J., & Berger, J. O. (1999). Quantifying surprise in the data and model verification. Bayesian Statistics, 6, 53-83.
-
(1999)
Bayesian Statistics
, vol.6
, pp. 53-83
-
-
Bayarri, M.J.1
Berger, J.O.2
-
8
-
-
0344232419
-
-
A. Boomsma, M. A. J. Duijnvan, and T. A. B. Snijders (Eds.), New York: Springer
-
Boomsma, A., van Duijn, M. A. J., & Snijders, T. A. B. (Eds.) (2000). Essays on item response theory. New York: Springer.
-
(2000)
Essays on Item Response Theory
-
-
-
11
-
-
67649946286
-
-
2nd ed, Boca Raton: Chapman & Hall/CRC
-
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analyses (2nd ed.). Boca Raton: Chapman & Hall/CRC.
-
(2004)
Bayesian Data Analyses
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
14
-
-
34249762770
-
The statistical analysis of general processing tree models with the EM algorithm
-
Hu, X., & Batchelder, W. H. (1994). The statistical analysis of general processing tree models with the EM algorithm. Psychometrika, 59, 21-47.
-
(1994)
Psychometrika
, vol.59
, pp. 21-47
-
-
Hu, X.1
Batchelder, W.H.2
-
15
-
-
0346957341
-
Markov chain estimation methods for test theory without an answer key
-
Karabatsos, G., & Batchelder, W. H. (2003). Markov chain estimation methods for test theory without an answer key. Psychometrika, 68, 373-389.
-
(2003)
Psychometrika
, vol.68
, pp. 373-389
-
-
Karabatsos, G.1
Batchelder, W.H.2
-
16
-
-
33745006600
-
Hierarchical multinomial processing tree models: A latent-class approach
-
Klauer, K. C. (2006). Hierarchical multinomial processing tree models: a latent-class approach. Psychometrika, 71, 1-31.
-
(2006)
Psychometrika
, vol.71
, pp. 1-31
-
-
Klauer, K.C.1
-
19
-
-
0003187012
-
Multinomial modeling and the measurement of cognitive processes
-
Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339.
-
(1988)
Psychological Review
, vol.95
, pp. 318-339
-
-
Riefer, D.M.1
Batchelder, W.H.2
-
20
-
-
0006168233
-
Age differences in storage and retrieval: A multinomial modeling analysis
-
Riefer, D. M., & Batchelder, W. H. (1991). Age differences in storage and retrieval: a multinomial modeling analysis. Bulletin of the Psychonomic Society, 29, 415-418.
-
(1991)
Bulletin of the Psychonomic Society
, vol.29
, pp. 415-418
-
-
Riefer, D.M.1
Batchelder, W.H.2
-
21
-
-
0001153986
-
Simulation of truncated normal variables
-
Robert, P. C. (1995). Simulation of truncated normal variables. Statistics and Computing, 5, 121-125.
-
(1995)
Statistics and Computing
, vol.5
, pp. 121-125
-
-
Robert, P.C.1
-
23
-
-
31044444107
-
An introduction to Bayesian hierarchical models with an application in the theory of signal detection
-
Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573-604.
-
(2005)
Psychonomic Bulletin & Review
, vol.12
, pp. 573-604
-
-
Rouder, J.N.1
Lu, J.2
-
24
-
-
44149105383
-
A hierarchical process-dissociation model
-
Rouder, J. N., Lu, J., Morey, R. D., Sun, D., & Speckman, P. L. (2008). A hierarchical process-dissociation model. Journal of Experimental Psychology: General, 137, 370-389.
-
(2008)
Journal of Experimental Psychology: General
, vol.137
, pp. 370-389
-
-
Rouder, J.N.1
Lu, J.2
Morey, R.D.3
Sun, D.4
Speckman, P.L.5
-
25
-
-
50949105657
-
Assessing individual differences in categorical data
-
Smith, J. B., & Batchelder, H. W. (2008). Assessing individual differences in categorical data. Psychonomic Bulletin & Review, 15, 713-731.
-
(2008)
Psychonomic Bulletin & Review
, vol.15
, pp. 713-731
-
-
Smith, J.B.1
Batchelder, H.W.2
-
26
-
-
77950069876
-
Beta-MPT: Multinomial processing tree models for addressing individual differences
-
(in press)
-
Smith, J., & Batchelder, W. (2009, in press). Beta-MPT: Multinomial processing tree models for addressing individual differences. Journal of Mathematical Psychology.
-
(2009)
Journal of Mathematical Psychology
-
-
Smith, J.1
Batchelder, W.2
-
27
-
-
34547828781
-
HMMTree: A computer program for latent-class hierarchical multinomial processing tree models
-
Stahl, C., & Klauer, K. C. (2007). HMMTree: A computer program for latent-class hierarchical multinomial processing tree models. Behavior Research Methods, 39, 267-273.
-
(2007)
Behavior Research Methods
, vol.39
, pp. 267-273
-
-
Stahl, C.1
Klauer, K.C.2
-
28
-
-
84877745286
-
Probits
-
B. S. Everitt and D. C. Howell (Eds.), Chichester: Wiley
-
Stefanescu, C., Berger, V. W., & Hershberger, S. (2005). Probits. In B. S. Everitt & D. C. Howell (Eds.), The encyclopedia of statistics in behavioral science (Vol. 4, pp. 1608-1610). Chichester: Wiley.
-
(2005)
The Encyclopedia of Statistics in Behavioral Science
, pp. 1608-1610
-
-
Stefanescu, C.1
Berger, V.W.2
Hershberger, S.3
-
29
-
-
76649143337
-
Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters
-
Tuyl, F., Gerlach, R., & Mengersen, K. (2009). Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Analysis, 4, 151-158.
-
(2009)
Bayesian Analysis
, vol.4
, pp. 151-158
-
-
Tuyl, F.1
Gerlach, R.2
Mengersen, K.3
-
30
-
-
84950432017
-
A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
-
Wei, G. C. G., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85, 699-704.
-
(1990)
Journal of the American Statistical Association
, vol.85
, pp. 699-704
-
-
Wei, G.C.G.1
Tanner, M.A.2
-
31
-
-
23844527237
-
The counter-intuitive non-informative prior for the Bernoulli family
-
Retrieved June 19, 2009, from
-
Zhu, M., & Lu, A. Y. (2004). The counter-intuitive non-informative prior for the Bernoulli family. Journal of Statistics Education, 12. Retrieved June 19, 2009, from http://www. amstat. org/publications/jse/v12n2/zhu. pdf.
-
(2004)
Journal of Statistics Education
, pp. 12
-
-
Zhu, M.1
Lu, A.Y.2
|