메뉴 건너뛰기




Volumn 75, Issue 1, 2010, Pages 70-98

Hierarchical multinomial processing tree models: A latent-trait approach

Author keywords

Gibbs sampler; Hierarchical models; Multinomial processing tree models

Indexed keywords


EID: 77950067348     PISSN: 00333123     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11336-009-9141-0     Document Type: Article
Times cited : (205)

References (31)
  • 3
    • 0000764531 scopus 로고
    • Logistic-normal distributions: Some properties and uses
    • Atchison, J., & Shen, S. M. (1980). Logistic-normal distributions: Some properties and uses. Biometrika, 67, 261-272.
    • (1980) Biometrika , vol.67 , pp. 261-272
    • Atchison, J.1    Shen, S.M.2
  • 5
    • 0033084954 scopus 로고    scopus 로고
    • Theoretical and empirical review of multinomial processing tree modeling
    • Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial processing tree modeling. Psychonomic Bulletin & Review, 6, 57-86.
    • (1999) Psychonomic Bulletin & Review , vol.6 , pp. 57-86
    • Batchelder, W.H.1    Riefer, D.M.2
  • 6
    • 34547702692 scopus 로고    scopus 로고
    • Using multinomial processing tree models to measure cognitive deficits in clinical populations
    • R. W. T. Neufeld (Ed.), Washington: American Psychological Association Books
    • Batchelder, W. H., & Riefer, D. M. (2007). Using multinomial processing tree models to measure cognitive deficits in clinical populations. In R. W. T. Neufeld (Ed.), Advances in clinical cognitive science: formal analysis of processes and symptoms (pp. 19-50). Washington: American Psychological Association Books.
    • (2007) Advances in Clinical Cognitive Science: Formal Analysis of Processes and Symptoms , pp. 19-50
    • Batchelder, W.H.1    Riefer, D.M.2
  • 7
    • 0003011165 scopus 로고    scopus 로고
    • Quantifying surprise in the data and model verification
    • Bayarri, M. J., & Berger, J. O. (1999). Quantifying surprise in the data and model verification. Bayesian Statistics, 6, 53-83.
    • (1999) Bayesian Statistics , vol.6 , pp. 53-83
    • Bayarri, M.J.1    Berger, J.O.2
  • 8
    • 0344232419 scopus 로고    scopus 로고
    • A. Boomsma, M. A. J. Duijnvan, and T. A. B. Snijders (Eds.), New York: Springer
    • Boomsma, A., van Duijn, M. A. J., & Snijders, T. A. B. (Eds.) (2000). Essays on item response theory. New York: Springer.
    • (2000) Essays on Item Response Theory
  • 14
    • 34249762770 scopus 로고
    • The statistical analysis of general processing tree models with the EM algorithm
    • Hu, X., & Batchelder, W. H. (1994). The statistical analysis of general processing tree models with the EM algorithm. Psychometrika, 59, 21-47.
    • (1994) Psychometrika , vol.59 , pp. 21-47
    • Hu, X.1    Batchelder, W.H.2
  • 15
    • 0346957341 scopus 로고    scopus 로고
    • Markov chain estimation methods for test theory without an answer key
    • Karabatsos, G., & Batchelder, W. H. (2003). Markov chain estimation methods for test theory without an answer key. Psychometrika, 68, 373-389.
    • (2003) Psychometrika , vol.68 , pp. 373-389
    • Karabatsos, G.1    Batchelder, W.H.2
  • 16
    • 33745006600 scopus 로고    scopus 로고
    • Hierarchical multinomial processing tree models: A latent-class approach
    • Klauer, K. C. (2006). Hierarchical multinomial processing tree models: a latent-class approach. Psychometrika, 71, 1-31.
    • (2006) Psychometrika , vol.71 , pp. 1-31
    • Klauer, K.C.1
  • 19
    • 0003187012 scopus 로고
    • Multinomial modeling and the measurement of cognitive processes
    • Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339.
    • (1988) Psychological Review , vol.95 , pp. 318-339
    • Riefer, D.M.1    Batchelder, W.H.2
  • 20
    • 0006168233 scopus 로고
    • Age differences in storage and retrieval: A multinomial modeling analysis
    • Riefer, D. M., & Batchelder, W. H. (1991). Age differences in storage and retrieval: a multinomial modeling analysis. Bulletin of the Psychonomic Society, 29, 415-418.
    • (1991) Bulletin of the Psychonomic Society , vol.29 , pp. 415-418
    • Riefer, D.M.1    Batchelder, W.H.2
  • 21
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • Robert, P. C. (1995). Simulation of truncated normal variables. Statistics and Computing, 5, 121-125.
    • (1995) Statistics and Computing , vol.5 , pp. 121-125
    • Robert, P.C.1
  • 23
    • 31044444107 scopus 로고    scopus 로고
    • An introduction to Bayesian hierarchical models with an application in the theory of signal detection
    • Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573-604.
    • (2005) Psychonomic Bulletin & Review , vol.12 , pp. 573-604
    • Rouder, J.N.1    Lu, J.2
  • 25
    • 50949105657 scopus 로고    scopus 로고
    • Assessing individual differences in categorical data
    • Smith, J. B., & Batchelder, H. W. (2008). Assessing individual differences in categorical data. Psychonomic Bulletin & Review, 15, 713-731.
    • (2008) Psychonomic Bulletin & Review , vol.15 , pp. 713-731
    • Smith, J.B.1    Batchelder, H.W.2
  • 26
    • 77950069876 scopus 로고    scopus 로고
    • Beta-MPT: Multinomial processing tree models for addressing individual differences
    • (in press)
    • Smith, J., & Batchelder, W. (2009, in press). Beta-MPT: Multinomial processing tree models for addressing individual differences. Journal of Mathematical Psychology.
    • (2009) Journal of Mathematical Psychology
    • Smith, J.1    Batchelder, W.2
  • 27
    • 34547828781 scopus 로고    scopus 로고
    • HMMTree: A computer program for latent-class hierarchical multinomial processing tree models
    • Stahl, C., & Klauer, K. C. (2007). HMMTree: A computer program for latent-class hierarchical multinomial processing tree models. Behavior Research Methods, 39, 267-273.
    • (2007) Behavior Research Methods , vol.39 , pp. 267-273
    • Stahl, C.1    Klauer, K.C.2
  • 29
    • 76649143337 scopus 로고    scopus 로고
    • Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters
    • Tuyl, F., Gerlach, R., & Mengersen, K. (2009). Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Analysis, 4, 151-158.
    • (2009) Bayesian Analysis , vol.4 , pp. 151-158
    • Tuyl, F.1    Gerlach, R.2    Mengersen, K.3
  • 30
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G. C. G., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85, 699-704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 31
    • 23844527237 scopus 로고    scopus 로고
    • The counter-intuitive non-informative prior for the Bernoulli family
    • Retrieved June 19, 2009, from
    • Zhu, M., & Lu, A. Y. (2004). The counter-intuitive non-informative prior for the Bernoulli family. Journal of Statistics Education, 12. Retrieved June 19, 2009, from http://www. amstat. org/publications/jse/v12n2/zhu. pdf.
    • (2004) Journal of Statistics Education , pp. 12
    • Zhu, M.1    Lu, A.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.