메뉴 건너뛰기




Volumn 29, Issue 3, 2007, Pages 231-252

Bayesian networks for imputation in classification problems

Author keywords

Bayesian networks; Data mining; Missing values

Indexed keywords

BAYESIAN NETWORKS; COMPUTER SIMULATION; DECISION TREES; PROBLEM SOLVING;

EID: 36448984344     PISSN: 09259902     EISSN: 15737675     Source Type: Journal    
DOI: 10.1007/s10844-006-0016-x     Document Type: Article
Times cited : (58)

References (56)
  • 1
    • 2642651530 scopus 로고
    • Missing plot techniques
    • Anderson, R. L. (1946). Missing plot techniques. Biometrics, 2, 41-47.
    • (1946) Biometrics , vol.2 , pp. 41-47
    • Anderson, R.L.1
  • 2
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • 5-6
    • Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-6), 519-533.
    • (2003) Applied Artificial Intelligence , vol.17 , pp. 519-533
    • Batista, G.E.A.P.A.1    Monard, M.C.2
  • 5
    • 26944437287 scopus 로고    scopus 로고
    • Applications of Bayesian networks in meteorology
    • J. A. Gámez, et al. (Eds.) Springer-Verlag
    • Cano, R., Sordo, C., & Gutiérrez, J. M., (2004). Applications of Bayesian networks in meteorology. In J. A. Gámez, et al. (Eds.), Advances in Bayesian networks (pp. 309-327). Springer-Verlag.
    • (2004) Advances in Bayesian Networks , pp. 309-327
    • Cano, R.1    Sordo, C.2    Gutiérrez, J.M.3
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 11
    • 0032596380 scopus 로고    scopus 로고
    • SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: A development environment for graphical decision-theoretic models (Intelligent Systems Demonstration)
    • Menlo Park, CA: AAAI Press/The MIT Press
    • Druzdzel, M. J. (1999). SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: A development environment for graphical decision-theoretic models (Intelligent Systems Demonstration). In Proceedings of the sixteenth national conference on artificial intelligence (AAAI-99) (pp. 902-903). Menlo Park, CA: AAAI Press/The MIT Press.
    • (1999) Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99) , pp. 902-903
    • Druzdzel, M.J.1
  • 16
    • 0012999549 scopus 로고
    • (Tech. Rep. AI Lab Memo No. 1509, CBCL Paper N°. 108). MIT AI Lab
    • Ghahramami, Z., & Jordan, M. (1995). Learning from incomplete data (Tech. Rep. AI Lab Memo No. 1509, CBCL Paper N°. 108). MIT AI Lab.
    • (1995) Learning from Incomplete Data
    • Ghahramami, Z.1    Jordan, M.2
  • 20
    • 0003846041 scopus 로고
    • A tutorial on learning Bayesian networks
    • Microsoft Research, Advanced Technology Division, Microsoft Corporation
    • Heckerman, D. (1995). A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06. Microsoft Research, Advanced Technology Division, Microsoft Corporation.
    • (1995) Technical Report , vol.MSR-TR-95-06
    • Heckerman, D.1
  • 24
    • 2442705696 scopus 로고    scopus 로고
    • Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
    • Hsu, W. H. (2004). Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning. Information Sciences, 163, 103-122.
    • (2004) Information Sciences , vol.163 , pp. 103-122
    • Hsu, W.H.1
  • 25
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • Jordan, M., & Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.1    Jacobs, R.2
  • 26
    • 0029617280 scopus 로고    scopus 로고
    • Convergence results for the em approach to mixtures of experts architectures
    • Jordan, M., & Xu, L. (1996). Convergence results for the EM approach to mixtures of experts architectures. Neural Networks, 8, 1409-1431.
    • (1996) Neural Networks , vol.8 , pp. 1409-1431
    • Jordan, M.1    Xu, L.2
  • 28
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks, an approach based on the MDL principle
    • Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks, an approach based on the MDL principle. Computational Intelligence, 10, 269-293.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 32
    • 0003408496 scopus 로고    scopus 로고
    • California: University of California, Department of Information and Computer Science
    • Merz, C. J., & Murphy, P. M. (1997). UCI Repository of Machine Learning Databases. Retrieved from http://www.ics.uci.edu. Irvine, California: University of California, Department of Information and Computer Science.
    • (1997) UCI Repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 34
    • 0346083482 scopus 로고    scopus 로고
    • (Tech. Rep. CMU-CS-01-126). Doctoral dissertation, Computer Science Department, Carnegie Mellon University
    • Nigam, K. (2001). Using unlabeled data to improve text classification (Tech. Rep. CMU-CS-01-126). Doctoral dissertation, Computer Science Department, Carnegie Mellon University.
    • (2001) Using Unlabeled Data to Improve Text Classification
    • Nigam, K.1
  • 36
    • 0040915482 scopus 로고
    • Iterative procedures for missing values in experiments
    • Preece, A. D. (1971). Iterative procedures for missing values in experiments. Technometrics, 13, 743-753.
    • (1971) Technometrics , vol.13 , pp. 743-753
    • Preece, A.D.1
  • 38
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 40
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • 2
    • Redner, R., & Walker, H. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2), 152-239.
    • (1984) SIAM Review , vol.26 , pp. 152-239
    • Redner, R.1    Walker, H.2
  • 41
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 42
    • 0001354633 scopus 로고
    • Formalizing subjective notion about the effects of nonrespondents in samples surveys
    • Rubin, D. B. (1977). Formalizing subjective notion about the effects of nonrespondents in samples surveys. Journal of the American Statistical Association, 72, 538-543.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 538-543
    • Rubin, D.B.1
  • 45
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • 2
    • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 46
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 48
    • 84986980101 scopus 로고
    • Sequential updating of conditional probability on direct graphical structures
    • Spiegelhalter, D. J., & Lauritzen, S. L. (1990). Sequential updating of conditional probability on direct graphical structures. Networks, 20, 576-606.
    • (1990) Networks , vol.20 , pp. 576-606
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 49
    • 0000605742 scopus 로고    scopus 로고
    • Computation on Bayesian graphical models
    • Spiegelhalter, D. J., Thomas, A., & Best, N. G. (1996). Computation on Bayesian graphical models. Bayesian Statistics, 5, 407-425. Retrieved from http://www.mrc.bsu.cam.ac.uk/bugs.
    • (1996) Bayesian Statistics , vol.5 , pp. 407-425
    • Spiegelhalter, D.J.1    Thomas, A.2    Best, N.G.3
  • 52
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 53
    • 0011761172 scopus 로고
    • Probabilistic induction by dynamic path generation in virtual trees
    • Cambridge University Press Cambridge
    • White, A. P. (1987). Probabilistic induction by dynamic path generation in virtual trees. In M. A. Bramer (Ed.), Research and development in expert systems III, (pp. 35-46). Cambridge: Cambridge University Press.
    • (1987) Research and Development in Expert Systems III , pp. 35-46
    • White, A.P.1    Bramer, M.A.2
  • 55
    • 0002210265 scopus 로고
    • On the convergence properties of the em algorithm
    • 1
    • Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics, 11(1), 95-103.
    • (1983) The Annals of Statistics , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 56
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the em algorithm for Gaussian mixtures
    • Xu, L., & Jordan, M. (1996). On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 8, 129-151.
    • (1996) Neural Computation , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.