-
1
-
-
0029484103
-
A survey and critique of techniques for extracting rules from trained artificial neural networks
-
Andrews, R., J. Diederich, A. B. Tickle. 1995. A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based Systems 8(6) 373-389.
-
(1995)
Knowledge Based Systems
, vol.8
, Issue.6
, pp. 373-389
-
-
Andrews, R.1
Diederich, J.2
Tickle., A.B.3
-
2
-
-
0037534150
-
Using neural network rule extraction and decision tables for credit-risk evaluation
-
Baesens, B., R. Setiono, C. Mues, J. Vanthienen. 2003. Using neural network rule extraction and decision tables for credit-risk evaluation. Management Sci. 49(3) 312-329.
-
(2003)
Management Sci
, vol.49
, Issue.3
, pp. 312-329
-
-
Baesens, B.1
Setiono, R.2
Mues, C.3
Vanthienen, J.4
-
4
-
-
33745202712
-
Eclectic rule-extraction from support vector machines
-
Barakat, N., J. Diederich. 2005. Eclectic rule-extraction from support vector machines. Internat. J. Comput. Intelligence 2(1) 59-62.
-
(2005)
Internat. J. Comput. Intelligence
, vol.2
, Issue.1
, pp. 59-62
-
-
Barakat, N.1
Diederich, J.2
-
5
-
-
0002935122
-
Combining support vector and mathematical programming methods for induction
-
B. Schölkopf, C. Burges, A. Smola, eds. MIT Press, Cambridge, MA
-
Bennett, K. 1999. Combining support vector and mathematical programming methods for induction. B. Schölkopf, C. Burges, A. Smola, eds. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 307-326.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 307-326
-
-
Bennett, K.1
-
6
-
-
12244300139
-
Column-generation boosting methods for mixture of kernels
-
Seattle, ACM, New York
-
Bi, J., T. Zhang, K. P. Bennett. 2004. Column-generation boosting methods for mixture of kernels. Proc. 10th ACM SIGKDD Internat. Conf. Knowledge Discovery Data Mining, Seattle, ACM, New York, 521-526.
-
(2004)
Proc. 10th ACM SIGKDD Internat. Conf. Knowledge Discovery Data Mining
, pp. 521-526
-
-
Bi, J.1
Zhang, T.2
Bennett., K.P.3
-
8
-
-
0033721433
-
Massive data discrimination via linear support vector machines
-
Bradley, P. S., O. L. Mangasarian. 2000. Massive data discrimination via linear support vector machines. Optim. Methods Software 13 1-10.
-
(2000)
Optim. Methods Software
, vol.13
, pp. 1-10
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
9
-
-
77949348778
-
Support vector machines and distance minimization
-
P. M. Pardalos, P. Hansen, eds., American Mathematical Society, Providence, RI
-
Carrizosa, E. 2008. Support vector machines and distance minimization. P. M. Pardalos, P. Hansen, eds. Data Mining and Mathematical Programming, CRM Proc. Lecture Notes, Vol. 45. American Mathematical Society, Providence, RI, 1-14.
-
(2008)
Data Mining and Mathematical Programming, CRM Proc. Lecture Notes
, vol.45
, pp. 1-14
-
-
Carrizosa, E.1
-
10
-
-
39449096616
-
Multigroup support vector machines with measurement cost: A biobjective approach
-
Carrizosa, E., B. Martín-Barragán, D. Romero Morales. 2008. Multigroup support vector machines with measurement cost: A biobjective approach. Discrete Appl. Math. 156(6) 950-966.
-
(2008)
Discrete Appl. Math.
, vol.156
, Issue.6
, pp. 950-966
-
-
Carrizosa, E.1
Martín-Barragán, B.2
Morales, D.R.3
-
11
-
-
38049043377
-
Does SVM really scale up to large bag of words feature spaces?
-
M. R. Berthold, J. Shawe-Taylor, N. Lavrac, eds., Springer, Berlin
-
Colas, F., P. Paclík, J. N. Kok, P. Brazdil. 2007. Does SVM really scale up to large bag of words feature spaces? M. R. Berthold, J. Shawe-Taylor, N. Lavrac, eds. Advances in Intelligent Data Analysis VII, Lectur e Notes in Computer Science, Vol. 4723. Springer, Berlin, 296-307.
-
(2007)
Advances in Intelligent Data Analysis VII, Lecture Notes in Computer Science
, vol.4723
, pp. 296-307
-
-
Colas, F.1
Paclík, P.2
Kok, J.N.3
Brazdil., P.4
-
12
-
-
34249753618
-
Support-vector networks
-
Cortes, C., V. Vapnik. 1995. Support-vector networks. Machine Learn. 20(3) 273-297.
-
(1995)
Machine Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik., V.2
-
14
-
-
0036161257
-
Linear programming boosting via column generation
-
Demiriz, A., K. P. Bennett, J. Shawe-Taylor. 2002. Linear programming boosting via column generation. Machine Learn. 46(1-3) 225-254.
-
(2002)
Machine Learn
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
15
-
-
3543109140
-
A feature selection Newton method for support vector machine classification
-
Fung, G., O. L. Mangasarian. 2004. A feature selection Newton method for support vector machine classification. Comput. Optim. Appl. 28(2) 185-202.
-
(2004)
Comput. Optim. Appl.
, vol.28
, Issue.2
, pp. 185-202
-
-
Fung, G.1
Mangasarian, O.L.2
-
16
-
-
32344439223
-
Rule extraction from linear support vector machines
-
Chicago, ACM, New York
-
Fung, G., S. Sandilya, R. Bharat Rao. 2005. Rule extraction from linear support vector machines. Proc. 11th ACM SIGKDD Internat. Conf. Knowledge Discovery Data Mining, Chicago, ACM, New York, 32-40.
-
(2005)
Proc. 11th ACM SIGKDD Internat. Conf. Knowledge Discovery Data Mining
, pp. 32-40
-
-
Fung, G.1
Sandilya, S.2
Rao., R.B.3
-
17
-
-
0001510482
-
A linear programming approach to the cutting-stock problem
-
Gilmore, P. C., R. E. Gomory. 1961. A linear programming approach to the cutting-stock problem. Oper. Res. 9(6) 849-859.
-
(1961)
Oper. Res.
, vol.9
, Issue.6
, pp. 849-859
-
-
Gilmore, P.C.1
Gomory, R.E.2
-
18
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I., J. Weston, S. Barnhill, V. Vapnik. 2002. Gene selection for cancer classification using support vector machines. Machine Learn. 46(1-3) 389-422.
-
(2002)
Machine Learn
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik., V.4
-
19
-
-
0003987805
-
-
MIT Press, Cambridge, MA
-
Hand, H., H. Mannila, P. Smyth. 2001. Principles of Data Mining. MIT Press, Cambridge, MA.
-
(2001)
Principles of Data Mining
-
-
Hand, H.1
Mannila, H.2
Smyth, P.3
-
20
-
-
0032355984
-
Classification by pairwise coupling
-
Hastie, T., R. Tibshirani. 1998. Classification by pairwise coupling. Ann. Statist. 26(2) 451-471.
-
(1998)
Ann. Statist.
, vol.26
, Issue.2
, pp. 451-471
-
-
Hastie, T.1
Tibshirani., R.2
-
21
-
-
0003684449
-
-
Springer, New York
-
Hastie, T., R. Tibshirani, J. Friedman. 2001. The Elements of Statistical Learning: Data Mining, Infer ence, and Prediction. Springer, New York.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
23
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Morgan Kaufmann, San Francisco
-
Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. 14th Internat. Joint Conf. Artificial Intelligence. Morgan Kaufmann, San Francisco, 1137-1143.
-
(1995)
Proc. 14th Internat. Joint Conf. Artificial Intelligence
, pp. 1137-1143
-
-
Kohavi, R.1
-
24
-
-
0000963583
-
Linear and nonlinear separation of patterns by linear programming
-
Mangasarian, O. L. 1965. Linear and nonlinear separation of patterns by linear programming. Oper. Res. 13(3) 444-452.
-
(1965)
Oper. Res.
, vol.13
, Issue.3
, pp. 444-452
-
-
Mangasarian, O.L.1
-
25
-
-
0001777975
-
Generalized support vector machines
-
A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans, eds. MIT Press, Cambridge, MA
-
Mangasarian, O. L. 2000. Generalized support vector machines. A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans, eds. Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, 135-146.
-
(2000)
Advances in Large Margin Classifiers
, pp. 135-146
-
-
Mangasarian, O.L.1
-
26
-
-
33845643039
-
Massive data classification via unconstrained support vector machines
-
Mangasarian, O. L., M. E. Thompson. 2006. Massive data classification via unconstrained support vector machines. J. Optim. Theory Appl. 131(3) 315-325.
-
(2006)
J. Optim. Theory Appl.
, vol.131
, Issue.3
, pp. 315-325
-
-
Mangasarian, O.L.1
Thompson, M.E.2
-
27
-
-
34447292534
-
Comprenhensible credit scoring models using rule extraction from support vector machines
-
Martens, D., B. Baesens, T. Van Gestel, J. Vanthienen. 2007. Comprenhensible credit scoring models using rule extraction from support vector machines. Eur. J. Oper. Res. 183(3) 1466-1476.
-
(2007)
Eur. J. Oper. Res.
, vol.183
, Issue.3
, pp. 1466-1476
-
-
Martens, D.1
Baesens, B.2
Van Gestel, T.3
Vanthienen., J.4
-
28
-
-
18144424165
-
-
Department of Information and Computer Sciences, University of California, Irvine, Irvine
-
Newman, D. J., S. Hettich, C. L. Blake, C. J. Merz. 1998. UCI machine learning repository. Department of Information and Computer Sciences, University of California, Irvine, Irvine, http://www.ics.uci.edu/∼mlearn/MLRepository. html.
-
(1998)
UCI Machine Learning Repository
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz., C.J.4
-
29
-
-
10944251335
-
Rule extraction from support vector machines
-
Bruges, Belgium
-
Núñez, H., C. Angulo, A. Català. 2002. Rule extraction from support vector machines. Proc. Eur. Sympos. Artificial Networks (ESANN'2002), Bruges, Belgium, 107-112.
-
(2002)
Proc. Eur. Sympos. Artificial Networks (ESANN'2002)
, pp. 107-112
-
-
Núñez, H.1
Angulo, C.2
Català., A.3
-
30
-
-
0034859938
-
Support vector machines with different norms: Motivation, formulations and results
-
Pedroso, J. P., N. Murata. 2001. Support vector machines with different norms: Motivation, formulations and results. Pattern Recognition Lett. 22(12) 1263-1272.
-
(2001)
Pattern Recognition Lett.
, vol.22
, Issue.12
, pp. 1263-1272
-
-
Pedroso, J.P.1
Murata., N.2
-
31
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
Shawe-Taylor, J., P. L. Bartlett, R. C. Williamson, M. Anthony. 1998. Structural risk minimization over data-dependent hierarchies. IEEE Trans. Inform. Theory 44(5) 1926-1940.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, Issue.5
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
32
-
-
84898946392
-
Semiparametric support vector and linear programming machines
-
M. J. Kearns, S. A. Solla, D. A. Cohn, eds., MIT Press, Cambridge, MA
-
Smola, A., T. T. Frieß, B. Schölkopf. 1998. Semiparametric support vector and linear programming machines. M. J. Kearns, S. A. Solla, D. A. Cohn, eds. Advances in Neural Information Processing Systems 11. MIT Press, Cambridge, MA, 585-591.
-
(1998)
Advances in Neural Information Processing Systems
, vol.11
, pp. 585-591
-
-
Smola, A.1
Frieß, T.T.2
Schölkopf., B.3
-
33
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. J. Royal Statist. Soc. Ser. B 58(1) 267-288.
-
(1996)
J. Royal Statist. Soc. Ser. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
36
-
-
0001873884
-
Support vector density estimation
-
B. Schölkopf, C. Burges, A. Smola, eds. MIT Press, Cambridge, MA
-
Weston, J., A. Gammerman, M. O. Stitson, V. Vapnik, V. Vovk, C.Watkins. 1999. Support vector density estimation. B. Schölkopf, C. Burges, A. Smola, eds. Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, MA, 293-305.
-
(1999)
Advances in Kernel Methods-support Vector Learning
, pp. 293-305
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.O.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
|