메뉴 건너뛰기




Volumn 22, Issue 1, 2010, Pages 154-167

Binarized support vector machines

Author keywords

Binarization; Column generation; Supervised classification; Support vector machines

Indexed keywords


EID: 77949365085     PISSN: 10919856     EISSN: 15265528     Source Type: Journal    
DOI: 10.1287/ijoc.1090.0317     Document Type: Article
Times cited : (35)

References (36)
  • 1
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews, R., J. Diederich, A. B. Tickle. 1995. A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based Systems 8(6) 373-389.
    • (1995) Knowledge Based Systems , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle., A.B.3
  • 2
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit-risk evaluation
    • Baesens, B., R. Setiono, C. Mues, J. Vanthienen. 2003. Using neural network rule extraction and decision tables for credit-risk evaluation. Management Sci. 49(3) 312-329.
    • (2003) Management Sci , vol.49 , Issue.3 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 4
    • 33745202712 scopus 로고    scopus 로고
    • Eclectic rule-extraction from support vector machines
    • Barakat, N., J. Diederich. 2005. Eclectic rule-extraction from support vector machines. Internat. J. Comput. Intelligence 2(1) 59-62.
    • (2005) Internat. J. Comput. Intelligence , vol.2 , Issue.1 , pp. 59-62
    • Barakat, N.1    Diederich, J.2
  • 5
    • 0002935122 scopus 로고    scopus 로고
    • Combining support vector and mathematical programming methods for induction
    • B. Schölkopf, C. Burges, A. Smola, eds. MIT Press, Cambridge, MA
    • Bennett, K. 1999. Combining support vector and mathematical programming methods for induction. B. Schölkopf, C. Burges, A. Smola, eds. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 307-326.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 307-326
    • Bennett, K.1
  • 7
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Morgan Kaufmann, San Francisco
    • Bradley, P. S., O. L. Mangasarian. 1998. Feature selection via concave minimization and support vector machines. Machine Learning Proc. 15th Internat. Conf. (ICML '98), Morgan Kaufmann, San Francisco, 82-90.
    • (1998) Machine Learning Proc. 15th Internat. Conf. (ICML '98) , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 8
    • 0033721433 scopus 로고    scopus 로고
    • Massive data discrimination via linear support vector machines
    • Bradley, P. S., O. L. Mangasarian. 2000. Massive data discrimination via linear support vector machines. Optim. Methods Software 13 1-10.
    • (2000) Optim. Methods Software , vol.13 , pp. 1-10
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 9
    • 77949348778 scopus 로고    scopus 로고
    • Support vector machines and distance minimization
    • P. M. Pardalos, P. Hansen, eds., American Mathematical Society, Providence, RI
    • Carrizosa, E. 2008. Support vector machines and distance minimization. P. M. Pardalos, P. Hansen, eds. Data Mining and Mathematical Programming, CRM Proc. Lecture Notes, Vol. 45. American Mathematical Society, Providence, RI, 1-14.
    • (2008) Data Mining and Mathematical Programming, CRM Proc. Lecture Notes , vol.45 , pp. 1-14
    • Carrizosa, E.1
  • 10
    • 39449096616 scopus 로고    scopus 로고
    • Multigroup support vector machines with measurement cost: A biobjective approach
    • Carrizosa, E., B. Martín-Barragán, D. Romero Morales. 2008. Multigroup support vector machines with measurement cost: A biobjective approach. Discrete Appl. Math. 156(6) 950-966.
    • (2008) Discrete Appl. Math. , vol.156 , Issue.6 , pp. 950-966
    • Carrizosa, E.1    Martín-Barragán, B.2    Morales, D.R.3
  • 12
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., V. Vapnik. 1995. Support-vector networks. Machine Learn. 20(3) 273-297.
    • (1995) Machine Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik., V.2
  • 14
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • Demiriz, A., K. P. Bennett, J. Shawe-Taylor. 2002. Linear programming boosting via column generation. Machine Learn. 46(1-3) 225-254.
    • (2002) Machine Learn , vol.46 , Issue.1-3 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 15
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung, G., O. L. Mangasarian. 2004. A feature selection Newton method for support vector machine classification. Comput. Optim. Appl. 28(2) 185-202.
    • (2004) Comput. Optim. Appl. , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 17
    • 0001510482 scopus 로고
    • A linear programming approach to the cutting-stock problem
    • Gilmore, P. C., R. E. Gomory. 1961. A linear programming approach to the cutting-stock problem. Oper. Res. 9(6) 849-859.
    • (1961) Oper. Res. , vol.9 , Issue.6 , pp. 849-859
    • Gilmore, P.C.1    Gomory, R.E.2
  • 18
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., J. Weston, S. Barnhill, V. Vapnik. 2002. Gene selection for cancer classification using support vector machines. Machine Learn. 46(1-3) 389-422.
    • (2002) Machine Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik., V.4
  • 20
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie, T., R. Tibshirani. 1998. Classification by pairwise coupling. Ann. Statist. 26(2) 451-471.
    • (1998) Ann. Statist. , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani., R.2
  • 23
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann, San Francisco
    • Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. 14th Internat. Joint Conf. Artificial Intelligence. Morgan Kaufmann, San Francisco, 1137-1143.
    • (1995) Proc. 14th Internat. Joint Conf. Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 24
    • 0000963583 scopus 로고
    • Linear and nonlinear separation of patterns by linear programming
    • Mangasarian, O. L. 1965. Linear and nonlinear separation of patterns by linear programming. Oper. Res. 13(3) 444-452.
    • (1965) Oper. Res. , vol.13 , Issue.3 , pp. 444-452
    • Mangasarian, O.L.1
  • 25
    • 0001777975 scopus 로고    scopus 로고
    • Generalized support vector machines
    • A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans, eds. MIT Press, Cambridge, MA
    • Mangasarian, O. L. 2000. Generalized support vector machines. A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans, eds. Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, 135-146.
    • (2000) Advances in Large Margin Classifiers , pp. 135-146
    • Mangasarian, O.L.1
  • 26
    • 33845643039 scopus 로고    scopus 로고
    • Massive data classification via unconstrained support vector machines
    • Mangasarian, O. L., M. E. Thompson. 2006. Massive data classification via unconstrained support vector machines. J. Optim. Theory Appl. 131(3) 315-325.
    • (2006) J. Optim. Theory Appl. , vol.131 , Issue.3 , pp. 315-325
    • Mangasarian, O.L.1    Thompson, M.E.2
  • 27
    • 34447292534 scopus 로고    scopus 로고
    • Comprenhensible credit scoring models using rule extraction from support vector machines
    • Martens, D., B. Baesens, T. Van Gestel, J. Vanthienen. 2007. Comprenhensible credit scoring models using rule extraction from support vector machines. Eur. J. Oper. Res. 183(3) 1466-1476.
    • (2007) Eur. J. Oper. Res. , vol.183 , Issue.3 , pp. 1466-1476
    • Martens, D.1    Baesens, B.2    Van Gestel, T.3    Vanthienen., J.4
  • 28
    • 18144424165 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine, Irvine
    • Newman, D. J., S. Hettich, C. L. Blake, C. J. Merz. 1998. UCI machine learning repository. Department of Information and Computer Sciences, University of California, Irvine, Irvine, http://www.ics.uci.edu/∼mlearn/MLRepository. html.
    • (1998) UCI Machine Learning Repository
    • Newman, D.J.1    Hettich, S.2    Blake, C.L.3    Merz., C.J.4
  • 30
    • 0034859938 scopus 로고    scopus 로고
    • Support vector machines with different norms: Motivation, formulations and results
    • Pedroso, J. P., N. Murata. 2001. Support vector machines with different norms: Motivation, formulations and results. Pattern Recognition Lett. 22(12) 1263-1272.
    • (2001) Pattern Recognition Lett. , vol.22 , Issue.12 , pp. 1263-1272
    • Pedroso, J.P.1    Murata., N.2
  • 32
    • 84898946392 scopus 로고    scopus 로고
    • Semiparametric support vector and linear programming machines
    • M. J. Kearns, S. A. Solla, D. A. Cohn, eds., MIT Press, Cambridge, MA
    • Smola, A., T. T. Frieß, B. Schölkopf. 1998. Semiparametric support vector and linear programming machines. M. J. Kearns, S. A. Solla, D. A. Cohn, eds. Advances in Neural Information Processing Systems 11. MIT Press, Cambridge, MA, 585-591.
    • (1998) Advances in Neural Information Processing Systems , vol.11 , pp. 585-591
    • Smola, A.1    Frieß, T.T.2    Schölkopf., B.3
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. J. Royal Statist. Soc. Ser. B 58(1) 267-288.
    • (1996) J. Royal Statist. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.