메뉴 건너뛰기




Volumn 15, Issue 1, 2010, Pages 71-81

Rich dynamics of an SIR epidemic model

Author keywords

Basic reproduction number; Disease free equilibrium; Endemic equilibrium; SIR model; Stability; Transmission function

Indexed keywords


EID: 77949346441     PISSN: 13925113     EISSN: 23358963     Source Type: Journal    
DOI: 10.15388/na.2010.15.1.14365     Document Type: Article
Times cited : (56)

References (33)
  • 1
    • 0000998185 scopus 로고
    • Contribution to mathematical theory of epidemics
    • W.O. Kermack, A.G. McKendrick, Contribution to mathematical theory of epidemics, P. Roy. Soc. Lond. A Mat., 115, pp. 700-721, 1927.
    • (1927) P. Roy. Soc. Lond. a Mat , vol.115 , pp. 700-721
    • Kermack, W.O.1    McKendrick, A.G.2
  • 5
    • 0018041874 scopus 로고
    • A generalization of the Kermack-McKendrick deterministic epidemic model
    • V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42, pp. 43-61, 1978.
    • (1978) Math. Biosci , vol.42 , pp. 43-61
    • Capasso, V.1    Serio, G.2
  • 6
    • 0018856876 scopus 로고
    • Integral equation models for endemic infectious diseases
    • H.W. Hethcote, D.W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol., 9, pp. 37-47, 1980.
    • (1980) J. Math. Biol , vol.9 , pp. 37-47
    • Hethcote, H.W.1    Tudor, D.W.2
  • 7
    • 0023070210 scopus 로고
    • Dynamical behaviour of epidemiological models with nonlinear incidence rates
    • W.M. Liu, H.W. Hethcote, S.A. Levin, Dynamical behaviour of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25, pp.359-380, 1987.
    • (1987) J. Math. Biol , vol.25 , pp. 359-380
    • Liu, W.M.1    Hethcote, H.W.2    Levin, S.A.3
  • 8
    • 0022298258 scopus 로고
    • Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models
    • W. M. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models, J. Math. Biol., 23, pp. 187-204, 1986.
    • (1986) J. Math. Biol , vol.23 , pp. 187-204
    • Liu, W.M.1    Levin, S.A.2    Iwasa, Y.3
  • 9
    • 0024578161 scopus 로고
    • An epidemiological model with delay and a nonlinear incidence rate
    • H.W. Hethcote, M.A. Lewis, P. van den Driessche, An epidemiological model with delay and a nonlinear incidence rate, J. Math. Biol., 27, pp. 49-64, 1989.
    • (1989) J. Math. Biol , vol.27 , pp. 49-64
    • Hethcote, H.W.1    Lewis, M.A.2    van den Driessche, P.3
  • 10
    • 0025985745 scopus 로고
    • Some epidemiological model with nonlinear incidence
    • H.W. Hethcote, P. van den Driessche, Some epidemiological model with nonlinear incidence, J. Math. Biol., 29, pp. 271-287, 1991.
    • (1991) J. Math. Biol , vol.29 , pp. 271-287
    • Hethcote, H.W.1    van den Driessche, P.2
  • 11
    • 0027429258 scopus 로고
    • A disease transmission model in nonconstant population
    • W.R. Derrick, P. van den Driessche, A disease transmission model in nonconstant population, J. Math. Biol., 31, pp. 495-512, 1993.
    • (1993) J. Math. Biol , vol.31 , pp. 495-512
    • Derrick, W.R.1    van den Driessche, P.2
  • 12
    • 0029190838 scopus 로고
    • Global stability of a SIR epidemic model with time delay
    • E. Beretta, Y. Takeuchi, Global stability of a SIR epidemic model with time delay, J. Math. Biol., 33, pp.250-260, 1995.
    • (1995) J. Math. Biol , vol.33 , pp. 250-260
    • Beretta, E.1    Takeuchi, Y.2
  • 13
    • 0031167217 scopus 로고    scopus 로고
    • Convergence results in SIR epidemic model with varying population sizes
    • E. Beretta, Y. Takeuchi, Convergence results in SIR epidemic model with varying population sizes, Nonlinear Anal., 28, pp. 1909-1921, 1997.
    • (1997) Nonlinear Anal , vol.28 , pp. 1909-1921
    • Beretta, E.1    Takeuchi, Y.2
  • 14
    • 0035425156 scopus 로고    scopus 로고
    • Global asymptotic stability of a SIR epidemic model with distributed time delay
    • E. Beretta, T. Hara, W. Ma, Y. Takeuchi, Global asymptotic stability of a SIR epidemic model with distributed time delay, Nonlinear Anal., 47, pp. 4107-4115, 2001.
    • (2001) Nonlinear Anal , vol.47 , pp. 4107-4115
    • Beretta, E.1    Hara, T.2    Ma, W.3    Takeuchi, Y.4
  • 15
    • 10644240707 scopus 로고    scopus 로고
    • Global stability of an SIR epidemic model with time-delay
    • W. Ma, M. Song, Y. Takeuchi, Global stability of an SIR epidemic model with time-delay, Appl. Math. Lett., 17, pp. 1141-1145, 2004.
    • (2004) Appl. Math. Lett , vol.17 , pp. 1141-1145
    • Ma, W.1    Song, M.2    Takeuchi, Y.3
  • 16
    • 0036986139 scopus 로고    scopus 로고
    • Permanence of an SIR epidemic model with distributed time delays
    • W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54, pp. 581-591, 2002.
    • (2002) Tohoku Math. J , vol.54 , pp. 581-591
    • Ma, W.1    Takeuchi, Y.2    Hara, T.3    Beretta, E.4
  • 17
    • 0037429355 scopus 로고    scopus 로고
    • Dynamical behaviour of an epidemic model with nonlinear incidence rate
    • S. Ruan, W. Wang, Dynamical behaviour of an epidemic model with nonlinear incidence rate, J. Differ. Equations, 188, pp.135-163, 2003.
    • (2003) J. Differ. Equations , vol.188 , pp. 135-163
    • Ruan, S.1    Wang, W.2
  • 18
    • 33845715494 scopus 로고    scopus 로고
    • Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and tie delay
    • M. Song, W. Ma, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and tie delay, Dynamic of Continuous, Discrete and Impulsive Systems, 13, pp. 199-208, 2006.
    • (2006) Dynamic of Continuous, Discrete and Impulsive Systems , vol.13 , pp. 199-208
    • Song, M.1    Ma, W.2
  • 19
    • 33846576177 scopus 로고    scopus 로고
    • Permanence of a delayed SIR epidemic model with density dependent birth rate
    • M. Song, W. Ma, Y. Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate, J. Comput. Appl. Math., 201, pp. 389-394, 2007.
    • (2007) J. Comput. Appl. Math , vol.201 , pp. 389-394
    • Song, M.1    Ma, W.2    Takeuchi, Y.3
  • 21
    • 34547134261 scopus 로고    scopus 로고
    • Global analysis of an epidemic model with nonmonotone incidence rate
    • D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208, pp. 419-429, 2007.
    • (2007) Math. Biosci , vol.208 , pp. 419-429
    • Xiao, D.1    Ruan, S.2
  • 22
    • 0035358852 scopus 로고    scopus 로고
    • How should pathogen transmission be modelled?
    • H. McCallum, N. Barlow, J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16, pp. 295-300, 2001.
    • (2001) Trends Ecol. Evol , vol.16 , pp. 295-300
    • McCallum, H.1    Barlow, N.2    Hone, J.3
  • 25
    • 1542298927 scopus 로고    scopus 로고
    • Simulating the SARS outbreak in Beijing with limited data
    • W. Wang, S. Ruan, Simulating the SARS outbreak in Beijing with limited data, J. Theor. Biol., 227, pp. 369-379, 2004.
    • (2004) J. Theor. Biol , vol.227 , pp. 369-379
    • Wang, W.1    Ruan, S.2
  • 26
    • 33846857259 scopus 로고    scopus 로고
    • Some simple epidemic models
    • F. Brauer, Some simple epidemic models, Math. Biosci. Eng., 3(1), pp.1-15, 2006.
    • (2006) Math. Biosci. Eng , vol.3 , Issue.1 , pp. 1-15
    • Brauer, F.1
  • 28
    • 0030582615 scopus 로고    scopus 로고
    • Prevention of plague: Recommendations of the Advisory Committee on Immunization Practices
    • (RR-14)
    • Prevention of plague: recommendations of the Advisory Committee on Immunization Practices, Morbidity and Mortality Weekly Report, 45(RR-14), pp.1-15, 1996.
    • (1996) Morbidity and Mortality Weekly Report , vol.45 , pp. 1-15
  • 29
    • 0026064784 scopus 로고
    • Patterns in the effects of infectious diseases on population growth
    • O. Diekmann, M. Kretzschmar, Patterns in the effects of infectious diseases on population growth, J. Math. Biol., 29, pp. 539-570, 1991.
    • (1991) J. Math. Biol , vol.29 , pp. 539-570
    • Diekmann, O.1    Kretzschmar, M.2
  • 30
    • 0032020214 scopus 로고    scopus 로고
    • Uniqueness of limit cycles in models for micropaasitic and macroparasitic diseases
    • A. Zegeling, R.E. Kooij, Uniqueness of limit cycles in models for micropaasitic and macroparasitic diseases, J. Math. Biol., 36, pp. 407-417, 1998.
    • (1998) J. Math. Biol , vol.36 , pp. 407-417
    • Zegeling, A.1    Kooij, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.