메뉴 건너뛰기




Volumn 23, Issue 3, 2005, Pages 241-255

Learning states and rules for detecting anomalies in time series

Author keywords

Anomaly detection; Cluster validation; Clustering; Segmentation; Time series

Indexed keywords

ANOMALY DETECTION; CLUSTER VALIDATION; CLUSTERING; SEGMENTATION;

EID: 29144509475     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-005-4610-3     Document Type: Article
Times cited : (83)

References (28)
  • 2
    • 10044256143 scopus 로고    scopus 로고
    • Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
    • Laboratory for Learning Research, Florida Institute of Technology, Melbourne, FL
    • S. Salvador and P. Chan, "Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms," Laboratory for Learning Research, Florida Institute of Technology, Melbourne, FL, Technical Report TR-2003-18, 2003.
    • (2003) Technical Report , vol.TR-2003-18
    • Salvador, S.1    Chan, P.2
  • 3
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Santiago, Chile
    • R. Ng and J. Hah, "Efficient and effective clustering methods for spatial data mining," in The 20th Intl. Conf. On Very Large Data Bases, Santiago, Chile, 1994, pp. 12-15.
    • (1994) The 20th Intl. Conf. on Very Large Data Bases , pp. 12-15
    • Ng, R.1    Hah, J.2
  • 5
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • New York City, NY
    • A. Hinneburg and D. Keim, "An efficient approach to clustering in large multimedia databases with noise," in Proc 4th Intl. Conf. on Knowledge Discovery and Data Mining. New York City, NY, 1998, pp. 58-65.
    • (1998) Proc 4th Intl. Conf. on Knowledge Discovery and Data Mining , pp. 58-65
    • Hinneburg, A.1    Keim, D.2
  • 6
    • 0032652570 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • Sydney, Australia
    • S. Guha, R. Rastogi, and K. Shim, "ROCK: A robust clustering algorithm for categorical attributes," in The 15th Intl. Conf. on Data Engineering, Sydney, Australia, 1999, pp. 512-523.
    • (1999) The 15th Intl. Conf. on Data Engineering , pp. 512-523
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 7
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E. Han, and V. Kumar, "Chameleon: A hierarchical clustering algorithm using dynamic modeling," IEEE Computer, vol. 32, no 8, pp. 68-75, 1999.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 8
    • 0003052357 scopus 로고    scopus 로고
    • WaveCluster: A multi-resolution clustering approach for very large spatial databases
    • New York City, New York
    • G. Seikholeslami, S. Chatterjee and A. Zhang,:WaveCluster: A multi-resolution clustering approach for very large spatial databases," in Proc. of the 24th VLDB, New York City, New York, 1998, pp. 428-439.
    • (1998) Proc. of the 24th VLDB , pp. 428-439
    • Seikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 10
    • 0242581819 scopus 로고    scopus 로고
    • Clustering using Monte-Carlo cross-validation
    • Portland, OR
    • P. Smyth, "Clustering using Monte-Carlo cross-validation," in Proc. 2nd KDD, Portland, OR, 1996, pp. 126-133.
    • (1996) Proc. 2nd KDD , pp. 126-133
    • Smyth, P.1
  • 11
    • 84949215570 scopus 로고    scopus 로고
    • The kindest cut: Minimum message length segmentation
    • Sydney, Australia
    • R. Baxter and J. Oliver, "The kindest cut: minimum message length segmentation," in Algorithmic Learning Theory, 7th Intl. Workshop, Sydney, Australia, 1996, pp. 83-90.
    • (1996) Algorithmic Learning Theory, 7th Intl. Workshop , pp. 83-90
    • Baxter, R.1    Oliver, J.2
  • 12
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • M. Hansen and B. Yu, "Model selection and the principle of minimum description length," JASA, vol. 96, pp.746-774, 2001.
    • (2001) JASA , vol.96 , pp. 746-774
    • Hansen, M.1    Yu, B.2
  • 13
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based Cluster Analysis
    • C. Fraley and E. Raftery, "How many clusters? Which clustering method? Answers via model-based Cluster Analysis," Computer Journal, vol. 41, pp. 578-588, 1998.
    • (1998) Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, E.2
  • 14
    • 0035434818 scopus 로고    scopus 로고
    • Subspace Information criterion for model selection
    • M. Sugiyama and H. Ogawa, Subspace Information criterion for model selection, Neural Computation, vol. 13, no.8, pp. 1863-1889, 2001.
    • (2001) Neural Computation , vol.13 , Issue.8 , pp. 1863-1889
    • Sugiyama, M.1    Ogawa, H.2
  • 15
    • 1642433203 scopus 로고    scopus 로고
    • Estimating the number of segments in time series data using permutation tests
    • Maebashi City, Japan
    • K. Vasko and T. Toivonen. "Estimating the number of segments in time series data using permutation tests," in Proc. IEEE Intl. Conf. on Data Mining, Maebashi City, Japan, 2002, pp. 466-47.
    • (2002) Proc. IEEE Intl. Conf. on Data Mining , pp. 466-547
    • Vasko, K.1    Toivonen, T.2
  • 17
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T Golub, "Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data," Machine Learning, vol. 52, nos. 1-2, pp. 91-118, 2003.
    • (2003) Machine Learning , vol.52 , Issue.1-2 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 18
    • 0003414440 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the Gap statistic
    • Dept. of Biostatistics, Stanford Univ., Stanford, CA
    • R. Tibshirani, G. Walther, and T. Hastie, " Estimating the number of clusters in a dataset via the Gap statistic," Dept. of Biostatistics, Stanford Univ., Stanford, CA, Technical Report 208, 2001.
    • (2001) Technical Report , vol.208
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 19
    • 0012452913 scopus 로고    scopus 로고
    • Cluster validation by prediction strength
    • Dept. of Biostatistics, Stanford Univ., Stanford, CA
    • R. Tibshirani, G. Walther B. Botstein, and P. Brown, "Cluster validation by prediction strength," Dept. of Biostatistics, Stanford Univ., Stanford, CA, Technical Report 2001-21, 2001.
    • (2001) Technical Report , vol.2001 , Issue.21
    • Tibshirani, R.1    Walther, G.2    Botstein, B.3    Brown, P.4
  • 21
    • 78149337520 scopus 로고    scopus 로고
    • A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets
    • Maebashi City, Japan
    • A. Foss and A. Zaiane, "A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets." in Proc. of the 2002 IEEE Intl. Conf. on Data Mining (ICDM'02), Maebashi City, Japan, 2002, pp. 179-186.
    • (2002) Proc. of the 2002 IEEE Intl. Conf. on Data Mining (ICDM'02) , pp. 179-186
    • Foss, A.1    Zaiane, A.2
  • 22
    • 0034095177 scopus 로고    scopus 로고
    • An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome
    • S. Harris, D. Hess, and J. Venegas, "An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome," American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2, pp. 432-439, 2000.
    • (2000) American Journal of Respiratory and Critical Care Medicine , vol.161 , Issue.2 , pp. 432-439
    • Harris, S.1    Hess, D.2    Venegas, J.3
  • 23
    • 0012021893 scopus 로고    scopus 로고
    • Novelty detection in time series data using ideas from immunology
    • Reno, NV
    • D. Dasgupta and S. Forrest, "novelty detection in time series data using ideas from immunology," In Proc. Fifth Intl. Conf. on Intelligent Systems, Reno, NV, 1996, pp. 82-87.
    • (1996) Proc. Fifth Intl. Conf. on Intelligent Systems , pp. 82-87
    • Dasgupta, D.1    Forrest, S.2
  • 24
    • 3543075602 scopus 로고
    • An adaptive resonance architecture to define normality and detect novelties in time series and databases
    • Portland, OR
    • T. Caudell and D. Newman, "An adaptive resonance architecture to define normality and detect novelties in time series and databases," in Proc. IEEE World Congress on Neural Networks, Portland, OR, pp. IV166-176. 1993.
    • (1993) Proc. IEEE World Congress on Neural Networks
    • Caudell, T.1    Newman, D.2
  • 28
    • 8444253538 scopus 로고    scopus 로고
    • Riverside, CA. University of California-Computer Science and Engineering Department
    • E. Keogh and T. Folias, The UCR Time Series Data Mining Archive [http://www.cs.ucr.edu/~eamonn/TSDMA/index. html]. Riverside, CA. University of California-Computer Science and Engineering Department, 2004.
    • (2004) The UCR Time Series Data Mining Archive
    • Keogh, E.1    Folias, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.