-
2
-
-
10044256143
-
Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
-
Laboratory for Learning Research, Florida Institute of Technology, Melbourne, FL
-
S. Salvador and P. Chan, "Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms," Laboratory for Learning Research, Florida Institute of Technology, Melbourne, FL, Technical Report TR-2003-18, 2003.
-
(2003)
Technical Report
, vol.TR-2003-18
-
-
Salvador, S.1
Chan, P.2
-
3
-
-
0003136237
-
Efficient and effective clustering methods for spatial data mining
-
Santiago, Chile
-
R. Ng and J. Hah, "Efficient and effective clustering methods for spatial data mining," in The 20th Intl. Conf. On Very Large Data Bases, Santiago, Chile, 1994, pp. 12-15.
-
(1994)
The 20th Intl. Conf. on Very Large Data Bases
, pp. 12-15
-
-
Ng, R.1
Hah, J.2
-
4
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Portland OR
-
M. Ester, H. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. 3rd Intl. Conf. on Knowledge Discovery and Data Mining, Portland OR, 1996, pp. 226-231.
-
(1996)
Proc. 3rd Intl. Conf. on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.2
Sander, J.3
Xu, X.4
-
5
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
New York City, NY
-
A. Hinneburg and D. Keim, "An efficient approach to clustering in large multimedia databases with noise," in Proc 4th Intl. Conf. on Knowledge Discovery and Data Mining. New York City, NY, 1998, pp. 58-65.
-
(1998)
Proc 4th Intl. Conf. on Knowledge Discovery and Data Mining
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.2
-
6
-
-
0032652570
-
ROCK: A robust clustering algorithm for categorical attributes
-
Sydney, Australia
-
S. Guha, R. Rastogi, and K. Shim, "ROCK: A robust clustering algorithm for categorical attributes," in The 15th Intl. Conf. on Data Engineering, Sydney, Australia, 1999, pp. 512-523.
-
(1999)
The 15th Intl. Conf. on Data Engineering
, pp. 512-523
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
7
-
-
0032686723
-
Chameleon: A hierarchical clustering algorithm using dynamic modeling
-
G. Karypis, E. Han, and V. Kumar, "Chameleon: A hierarchical clustering algorithm using dynamic modeling," IEEE Computer, vol. 32, no 8, pp. 68-75, 1999.
-
(1999)
IEEE Computer
, vol.32
, Issue.8
, pp. 68-75
-
-
Karypis, G.1
Han, E.2
Kumar, V.3
-
8
-
-
0003052357
-
WaveCluster: A multi-resolution clustering approach for very large spatial databases
-
New York City, New York
-
G. Seikholeslami, S. Chatterjee and A. Zhang,:WaveCluster: A multi-resolution clustering approach for very large spatial databases," in Proc. of the 24th VLDB, New York City, New York, 1998, pp. 428-439.
-
(1998)
Proc. of the 24th VLDB
, pp. 428-439
-
-
Seikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
9
-
-
33845594450
-
An online algorithm for segmenting time series
-
San Jose, CA
-
E. Keogh, S. Chu, D. Hart and M. Pazanni, "An online algorithm for segmenting time series," in Proc. IEEE Intl. Conf. on Data Mining, San Jose, CA, 2001, pp. 289-296.
-
(2001)
Proc. IEEE Intl. Conf. on Data Mining
, pp. 289-296
-
-
Keogh, E.1
Chu, S.2
Hart, D.3
Pazanni, M.4
-
10
-
-
0242581819
-
Clustering using Monte-Carlo cross-validation
-
Portland, OR
-
P. Smyth, "Clustering using Monte-Carlo cross-validation," in Proc. 2nd KDD, Portland, OR, 1996, pp. 126-133.
-
(1996)
Proc. 2nd KDD
, pp. 126-133
-
-
Smyth, P.1
-
11
-
-
84949215570
-
The kindest cut: Minimum message length segmentation
-
Sydney, Australia
-
R. Baxter and J. Oliver, "The kindest cut: minimum message length segmentation," in Algorithmic Learning Theory, 7th Intl. Workshop, Sydney, Australia, 1996, pp. 83-90.
-
(1996)
Algorithmic Learning Theory, 7th Intl. Workshop
, pp. 83-90
-
-
Baxter, R.1
Oliver, J.2
-
12
-
-
0141879236
-
Model selection and the principle of minimum description length
-
M. Hansen and B. Yu, "Model selection and the principle of minimum description length," JASA, vol. 96, pp.746-774, 2001.
-
(2001)
JASA
, vol.96
, pp. 746-774
-
-
Hansen, M.1
Yu, B.2
-
13
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based Cluster Analysis
-
C. Fraley and E. Raftery, "How many clusters? Which clustering method? Answers via model-based Cluster Analysis," Computer Journal, vol. 41, pp. 578-588, 1998.
-
(1998)
Computer Journal
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, E.2
-
14
-
-
0035434818
-
Subspace Information criterion for model selection
-
M. Sugiyama and H. Ogawa, Subspace Information criterion for model selection, Neural Computation, vol. 13, no.8, pp. 1863-1889, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.8
, pp. 1863-1889
-
-
Sugiyama, M.1
Ogawa, H.2
-
15
-
-
1642433203
-
Estimating the number of segments in time series data using permutation tests
-
Maebashi City, Japan
-
K. Vasko and T. Toivonen. "Estimating the number of segments in time series data using permutation tests," in Proc. IEEE Intl. Conf. on Data Mining, Maebashi City, Japan, 2002, pp. 466-47.
-
(2002)
Proc. IEEE Intl. Conf. on Data Mining
, pp. 466-547
-
-
Vasko, K.1
Toivonen, T.2
-
16
-
-
0347918435
-
A resampling approach to cluster validation
-
Berlin, Germany
-
V. Roth, T. Lange, M. Braun, and J. Buhmann, "A resampling approach to cluster validation," in Proc. in Computational Statistics: 15th Symposium (COMPSTAT2002), Berlin, Germany, 2002, pp. 123-128.
-
(2002)
Proc. in Computational Statistics: 15th Symposium (COMPSTAT2002)
, pp. 123-128
-
-
Roth, V.1
Lange, T.2
Braun, M.3
Buhmann, J.4
-
17
-
-
0038724494
-
Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
-
S. Monti, P. Tamayo, J. Mesirov, and T Golub, "Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data," Machine Learning, vol. 52, nos. 1-2, pp. 91-118, 2003.
-
(2003)
Machine Learning
, vol.52
, Issue.1-2
, pp. 91-118
-
-
Monti, S.1
Tamayo, P.2
Mesirov, J.3
Golub, T.4
-
18
-
-
0003414440
-
Estimating the number of clusters in a dataset via the Gap statistic
-
Dept. of Biostatistics, Stanford Univ., Stanford, CA
-
R. Tibshirani, G. Walther, and T. Hastie, " Estimating the number of clusters in a dataset via the Gap statistic," Dept. of Biostatistics, Stanford Univ., Stanford, CA, Technical Report 208, 2001.
-
(2001)
Technical Report
, vol.208
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
19
-
-
0012452913
-
Cluster validation by prediction strength
-
Dept. of Biostatistics, Stanford Univ., Stanford, CA
-
R. Tibshirani, G. Walther B. Botstein, and P. Brown, "Cluster validation by prediction strength," Dept. of Biostatistics, Stanford Univ., Stanford, CA, Technical Report 2001-21, 2001.
-
(2001)
Technical Report
, vol.2001
, Issue.21
-
-
Tibshirani, R.1
Walther, G.2
Botstein, B.3
Brown, P.4
-
20
-
-
0035788889
-
A robust and scalable clustering algorithm for mixed type attributes in large database environment
-
San Francisco, CA
-
T. Chiu, D. Fang, J. Chen, Y. Wang, and C. Jeris, "A robust and scalable clustering algorithm for mixed type attributes in large database environment," in Proc. of the 7th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, San Francisco, CA, 2001, pp. 263-268.
-
(2001)
Proc. of the 7th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining
, pp. 263-268
-
-
Chiu, T.1
Fang, D.2
Chen, J.3
Wang, Y.4
Jeris, C.5
-
21
-
-
78149337520
-
A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets
-
Maebashi City, Japan
-
A. Foss and A. Zaiane, "A parameterless method for efficiently discovering clusters of arbitrary shape in large datasets." in Proc. of the 2002 IEEE Intl. Conf. on Data Mining (ICDM'02), Maebashi City, Japan, 2002, pp. 179-186.
-
(2002)
Proc. of the 2002 IEEE Intl. Conf. on Data Mining (ICDM'02)
, pp. 179-186
-
-
Foss, A.1
Zaiane, A.2
-
22
-
-
0034095177
-
An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome
-
S. Harris, D. Hess, and J. Venegas, "An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome," American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2, pp. 432-439, 2000.
-
(2000)
American Journal of Respiratory and Critical Care Medicine
, vol.161
, Issue.2
, pp. 432-439
-
-
Harris, S.1
Hess, D.2
Venegas, J.3
-
23
-
-
0012021893
-
Novelty detection in time series data using ideas from immunology
-
Reno, NV
-
D. Dasgupta and S. Forrest, "novelty detection in time series data using ideas from immunology," In Proc. Fifth Intl. Conf. on Intelligent Systems, Reno, NV, 1996, pp. 82-87.
-
(1996)
Proc. Fifth Intl. Conf. on Intelligent Systems
, pp. 82-87
-
-
Dasgupta, D.1
Forrest, S.2
-
24
-
-
3543075602
-
An adaptive resonance architecture to define normality and detect novelties in time series and databases
-
Portland, OR
-
T. Caudell and D. Newman, "An adaptive resonance architecture to define normality and detect novelties in time series and databases," in Proc. IEEE World Congress on Neural Networks, Portland, OR, pp. IV166-176. 1993.
-
(1993)
Proc. IEEE World Congress on Neural Networks
-
-
Caudell, T.1
Newman, D.2
-
25
-
-
1942452377
-
Robust induction of process models from time-series data
-
DC
-
P. Langley, D. George, S. Bay, and K. Saito, "Robust induction of process models from time-series data," in Proc. of the 20th Intl. Conf. on Machine Learning, Washington, DC, 2003, pp. 32-439.
-
(2003)
Proc. of the 20th Intl. Conf. on Machine Learning, Washington
, pp. 32-439
-
-
Langley, P.1
George, D.2
Bay, S.3
Saito, K.4
-
27
-
-
85152557036
-
Incremental reduced error pruning
-
New Brunswick, NJ
-
J. Furnkranz and G. Wildmer, "Incremental reduced error pruning," in Proc. Intl. Conf. on Machine Learning, New Brunswick, NJ, 1994, pp. 70-77.
-
(1994)
Proc. Intl. Conf. on Machine Learning
, pp. 70-77
-
-
Furnkranz, J.1
Wildmer, G.2
-
28
-
-
8444253538
-
-
Riverside, CA. University of California-Computer Science and Engineering Department
-
E. Keogh and T. Folias, The UCR Time Series Data Mining Archive [http://www.cs.ucr.edu/~eamonn/TSDMA/index. html]. Riverside, CA. University of California-Computer Science and Engineering Department, 2004.
-
(2004)
The UCR Time Series Data Mining Archive
-
-
Keogh, E.1
Folias, T.2
|