-
4
-
-
0000733359
-
-
10.1007/BF01525599
-
I. Krieger and T. Niu, Rheol. Acta 12, 567 (1973). 10.1007/BF01525599
-
(1973)
Rheol. Acta
, vol.12
, pp. 567
-
-
Krieger, I.1
Niu, T.2
-
9
-
-
0037127981
-
-
10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
-
M. Wilhelm, Macromol. Mater. Eng. 287, 83 (2002). 10.1002/1439- 2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
-
(2002)
Macromol. Mater. Eng.
, vol.287
, pp. 83
-
-
Wilhelm, M.1
-
12
-
-
0029733547
-
-
10.1122/1.550738
-
M. Reimers and J. Dealy, J. Rheol. 40, 167 (1996). 10.1122/1.550738
-
(1996)
J. Rheol.
, vol.40
, pp. 167
-
-
Reimers, M.1
Dealy, J.2
-
15
-
-
84946381278
-
-
10.1351/pac197542040551
-
J. Meissner, Pure Appl. Chem. 42, 551 (1975). 10.1351/pac197542040551
-
(1975)
Pure Appl. Chem.
, vol.42
, pp. 551
-
-
Meissner, J.1
-
16
-
-
34547257987
-
-
10.1103/PhysRevLett.98.238303
-
H. M. Wyss, K. Miyazaki, J. Mattsson, Z. Hu, D. R. Reichman, and D. A. Weitz, Phys. Rev. Lett. 98, 238303 (2007). 10.1103/PhysRevLett.98.238303
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 238303
-
-
Wyss, H.M.1
Miyazaki, K.2
Mattsson, J.3
Hu, Z.4
Reichman, D.R.5
Weitz, D.A.6
-
18
-
-
6244265764
-
-
10.1103/PhysRevLett.78.2020
-
P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates, Phys. Rev. Lett. 78, 2020 (1997). 10.1103/PhysRevLett.78.2020
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2020
-
-
Sollich, P.1
Lequeux, F.2
Hébraud, P.3
Cates, M.E.4
-
21
-
-
51149104567
-
-
10.1063/1.2964524
-
K. Desai, S. Lele, and A. Lele, AIP Conf. Proc., 1027, 1226 (2008). 10.1063/1.2964524
-
(2008)
AIP Conf. Proc.
, vol.1027
, pp. 1226
-
-
Desai, K.1
Lele, S.2
Lele, A.3
-
22
-
-
77749272742
-
-
By design, in a cone-plate measuring system the stresses and strains or strain rates are uniform across the plate gap.
-
By design, in a cone-plate measuring system the stresses and strains or strain rates are uniform across the plate gap.
-
-
-
-
23
-
-
77749263726
-
-
The sampling rate is well beyond the Nyquist rate of our experiments, aliasing effects are therefore neglected.
-
The sampling rate is well beyond the Nyquist rate of our experiments, aliasing effects are therefore neglected.
-
-
-
-
24
-
-
0003474751
-
-
Cambridge University Press, Cambridge
-
W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipies: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007).
-
(2007)
Numerical Recipies: The Art of Scientific Computing
-
-
Press, W.1
Teukolsky, S.2
Vetterling, W.3
Flannery, B.4
-
25
-
-
77749263728
-
-
The torque transducer Autoranging feature was disabled to prevent changes in torque scaling during the course of the experiments.
-
The torque transducer Autoranging feature was disabled to prevent changes in torque scaling during the course of the experiments.
-
-
-
-
28
-
-
77749272738
-
-
For the real-valued time series h (t) with Fourier coefficients H (ω), the amplitude spectrum is defined as 2 | H (ω) |. The sign of the moduli Gn′, Gn″ are determined by the phase angles Φn.
-
For the real-valued time series h (t) with Fourier coefficients H (ω), the amplitude spectrum is defined as 2 | H (ω) |. The sign of the moduli G n ′, G n ″ are determined by the phase angles Φ n.
-
-
-
-
29
-
-
77749263723
-
-
The sinc function is defined as sinc (t) =1 for t=0, sin (πt ) / (πt ) for other values of t.
-
The sinc function is defined as sinc (t) = 1 for t = 0, sin (π t) / (π t) for other values of t.
-
-
-
-
32
-
-
77749282085
-
-
The highest value of the ratio of the third to the first harmonic stress amplitude I (3ω ) /I (ω) ≡ σ3 / σ1 in our experiments was found to equal 0.22, consistent with machine limitations.
-
The highest value of the ratio of the third to the first harmonic stress amplitude I (3 ω) / I (ω) ≡ σ 3 / σ 1 in our experiments was found to equal 0.22, consistent with machine limitations.
-
-
-
-
34
-
-
0000950457
-
-
10.1103/PhysRevLett.76.3017
-
A. J. Liu, S. Ramaswamy, T. G. Mason, H. Gang, and D. A. Weitz, Phys. Rev. Lett. 76, 3017 (1996). 10.1103/PhysRevLett.76.3017
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 3017
-
-
Liu, A.J.1
Ramaswamy, S.2
Mason, T.G.3
Gang, H.4
Weitz, D.A.5
-
35
-
-
77749254094
-
-
(private communication).
-
Chirag Kalelkar (private communication).
-
-
-
Kalelkar, C.1
-
36
-
-
77749272739
-
-
The odd-order Green-Rivlin equation in one dimension is σ (t) = ∫∞t K1 (t- t1 ) γ ( t1 ) d t1 + ∫∞t ∫∞t ∫∞t K3 (t- t1 ,t- t2 ,t- t3 ) γ ( t1 ) γ ( t2 ) γ ( t3 ) d t1 d t2 d t3 +..., where K1 , K3 ,... are stress-relaxation moduli (see Ref. for the definition).
-
The odd-order Green-Rivlin equation in one dimension is σ (t) = ∫∞t K 1 (t - t 1) γ (t 1) d t 1 + ∫∞t ∫∞t ∫∞t K 3 (t - t 1, t - t 2, t - t 3) γ (t 1) γ (t 2) γ (t 3) d t 1 d t 2 d t 3 +..., where K 1, K 3,... are stress-relaxation moduli (see Ref. for the definition).
-
-
-
-
37
-
-
77749263722
-
-
The area bounded by the stress-strain curve may be found by applying Green's theorem, viz. ∫C (fdx+gdy ) = ∫ ∫D ( x g- y f ) dxdy where the plane region D is bounded by the simple, closed curve C with f (x,y ), g (x,y ) defined on an open region containing D and having continuous partial derivatives there. For f=0, g=x, the theorem reduces to ∫C xdy = ∫ ∫D dxdy.
-
The area bounded by the stress-strain curve may be found by applying Green's theorem, viz. ∫ C (f d x + g d y) = ∫ ∫ D ( x g - y f) d x d y where the plane region D is bounded by the simple, closed curve C with f (x, y), g (x, y) defined on an open region containing D and having continuous partial derivatives there. For f = 0, g = x, the theorem reduces to ∫ C x d y = ∫ ∫ D d x d y.
-
-
-
|