메뉴 건너뛰기




Volumn 14, Issue 1, 2010, Pages 69-75

Neural network ensemble-based solar power generation short-term forecasting

Author keywords

Neural network ensemble; Neural networks; Short term forecasting; Solar power generation

Indexed keywords


EID: 77749237383     PISSN: 13430130     EISSN: 18838014     Source Type: Journal    
DOI: 10.20965/jaciii.2010.p0069     Document Type: Conference Paper
Times cited : (34)

References (25)
  • 1
    • 0038713376 scopus 로고    scopus 로고
    • Solar resource estimation using artificial neural networks and comparison with other correlation models
    • S. K. Reddy and R. Manish,"Solar resource estimation using artificial neural networks and comparison with other correlation models,"Energy Conversion and Management, Vol.44, pp. 2519-2530, 2003.
    • (2003) Energy Conversion and Management , vol.44 , pp. 2519-2530
    • Reddy, S.K.1    Manish, R.2
  • 2
    • 0034140188 scopus 로고    scopus 로고
    • Use of radial basis functions for estimating monthly mean daily solar radiation
    • M. Mohandes, A. Balghonaim, M. Kassas, H. S. Rehman,"Use of radial basis functions for estimating monthly mean daily solar radiation,"Sol Energy, Vol.68, No.2, pp. 161-168, 2000.
    • (2000) Sol Energy , vol.68 , Issue.2 , pp. 161-168
    • Mohandes, M.1    Balghonaim, A.2    Kassas, M.3    Rehman, H.S.4
  • 3
    • 47149095417 scopus 로고    scopus 로고
    • Artificial intelligence techniques for photovoltaic applications: A review
    • A. Mellit and S. A. Kalogirou,"Artificial intelligence techniques for photovoltaic applications: a review,"Progress in Energy and Combustion Science, Vol.34, pp. 574-632, 2008.
    • (2008) Progress in Energy and Combustion Science , vol.34 , pp. 574-632
    • Mellit, A.1    Kalogirou, S.A.2
  • 4
    • 75449111025 scopus 로고    scopus 로고
    • Artificial intelligence technique for modeling and forecasting of solar radiation data: A review
    • A. Mellit,"Artificial Intelligence technique for modeling and forecasting of solar radiation data: a review,"Int. J. of Artificial Intelligence and Soft Computing, Vol.1, Issue 1, pp. 52-76, 2008.
    • (2008) Int. J. of Artificial Intelligence and Soft Computing , vol.1 , Issue.1 , pp. 52-76
    • Mellit, A.1
  • 5
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems: A review
    • S. A. Kalogirou,"Artificial Neural Networks in Renewable Energy Systems: A Review,"Renewable &Sustainable Energy Reviews, Vol.5, No.4, pp. 373-401, 2001.
    • (2001) Renewable &Sustainable Energy Reviews , vol.5 , Issue.4 , pp. 373-401
    • Kalogirou, S.A.1
  • 6
    • 40949144519 scopus 로고    scopus 로고
    • Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems
    • C. Maher and B. A. Mohsen,"Neuro-Fuzzy Dynamic Model with Kalman Filter to Forecast Irradiance and Temperature for Solar Energy Systems,"Renew Energy, pp. 1435-1443, 2008.
    • (2008) Renew Energy , pp. 1435-1443
    • Maher, C.1    Mohsen, B.A.2
  • 7
    • 47149116074 scopus 로고    scopus 로고
    • Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis
    • J. C. Cao and S. H. Cao,"Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis,"Energy Vol.3, pp. 13435-13445, 2006.
    • (2006) Energy , vol.3 , pp. 13435-13445
    • Cao, J.C.1    Cao, S.H.2
  • 8
    • 51349143456 scopus 로고    scopus 로고
    • Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models
    • Y. Jiang,"Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models,"Energy policy, Vol.36, No.10, pp. 3833-3837, 2008.
    • (2008) Energy Policy , vol.36 , Issue.10 , pp. 3833-3837
    • Jiang, Y.1
  • 9
    • 77749255775 scopus 로고    scopus 로고
    • Performance analysis of two-variate ANN models for predicting the output power from grid-connected photovoltaic system
    • S. I. Sulaiman, T. K. A. Rahman, I. Musirin, and S. Shaari, "Performance analysis of Two-variate ANN Models for predicting the output Power from Grid-connected Photovoltaic System,"Int. J. of power, Energy and Artificial Intelligence, Vol.2, No.1, pp. 73-77, 2009.
    • (2009) Int. J. of Power, Energy and Artificial Intelligence , vol.2 , Issue.1 , pp. 73-77
    • Sulaiman, S.I.1    Rahman, T.K.A.2    Musirin, I.3    Shaari, S.4
  • 11
    • 0003353181 scopus 로고    scopus 로고
    • Neural networks
    • 2nd Edition, Prentice Hall
    • S. Haykin,"Neural Networks,"A Comprehensive Foundation, 2nd Edition, Prentice Hall, 1999.
    • (1999) A Comprehensive Foundation
    • Haykin, S.1
  • 12
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • K. M. Hornik, M. Stinchcombe, and H. White,"Multilayer Feed-forward Networks are Universal Approximators,"Neural Networks, Vol.2, No.2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.2 , pp. 359-366
    • Hornik, K.M.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0001683814 scopus 로고
    • Layered neural networks with gaussian hidden units as universal approximators
    • E. J. Hartman, J. D. Keeler, and J. M. Kowalski,"Layered neural networks with gaussian hidden units as universal approximators,"Neural Comput, 2, pp. 210-215, 1990.
    • (1990) Neural Comput , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 16
    • 0001419757 scopus 로고
    • Distributed representations, simple recurrent networks and grammatical structure
    • J. L. Elman,"Distributed representations, simple recurrent networks and grammatical structure,"Mach. Learn., 7(2/3), pp. 195-226, 1991.
    • (1991) Mach. Learn. , vol.7 , Issue.2-3 , pp. 195-226
    • Elman, J.L.1
  • 17
    • 77749340393 scopus 로고    scopus 로고
    • Bagging neural networks for predicting water consumption
    • (Serial No.4)
    • Z. Gao, F. Ming, and Z. Hongling,"Bagging Neural Networks for Predicting Water Consumption,"J. of Communication and Computer, Vol.2, No.3, (Serial No.4), 2005.
    • (2005) J. of Communication and Computer , vol.2 , Issue.3
    • Gao, Z.1    Ming, F.2    Hongling, Z.3
  • 18
  • 20
    • 0031162750 scopus 로고    scopus 로고
    • Importance of data normalization for the application of neural networks to complex industrial problems
    • J. Sola and J. Sevilla,"Importance of data normalization for the application of neural networks to complex industrial problems,"IEEE Trans. on Nuclear Science, 44(3), pp. 1464-1468, 1997.
    • (1997) IEEE Trans. on Nuclear Science , vol.44 , Issue.3 , pp. 1464-1468
    • Sola, J.1    Sevilla, J.2
  • 21
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • G. Zhang, B. E. Patuwo, and M. Y. Hu,"Forecasting with artificial neural networks: The state of the art,"Int. J. of Forecasting, Vol. 14, Issue 1, pp. 35-62, 1998.
    • (1998) Int. J. of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 23
    • 8644285354 scopus 로고    scopus 로고
    • Reducing the number of neurons in radial basis function networks with dynamic decay adjustment
    • J. Paetz,"Reducing the number of neurons in radial basis function networks with dynamic decay adjustment,"Neuro-computing 62, pp. 79-91, 2004.
    • (2004) Neuro-computing , vol.62 , pp. 79-91
    • Paetz, J.1
  • 24
    • 33748420178 scopus 로고    scopus 로고
    • Reduced complexity RBF classifiers with support vector centres and dynamic decay adjustment
    • R. Perfetti and E. Ricci,"Reduced complexity RBF classifiers with support vector centres and dynamic decay adjustment,"Neurocomputing, pp. 2446-2450, 2006.
    • (2006) Neurocomputing , pp. 2446-2450
    • Perfetti, R.1    Ricci, E.2
  • 25
    • 33745217837 scopus 로고    scopus 로고
    • Improved pruning strategy for radial basis function networks with dynamic decay adjustment
    • E. Ricci and R. Perfetti,"Improved pruning strategy for radial basis function networks with dynamic decay adjustment,"Neurocomputing, pp. 1728-1732, 2006.
    • (2006) Neurocomputing , pp. 1728-1732
    • Ricci, E.1    Perfetti, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.