메뉴 건너뛰기




Volumn 31, Issue 7, 2010, Pages 539-547

Gaussian mixture learning via robust competitive agglomeration

Author keywords

Asymptotic analysis; Competitive agglomeration; Gaussian mixtures; Model selection

Indexed keywords

AUTOMATIC MODEL SELECTION; EM ALGORITHMS; GAUSSIAN MIXTURES; LOCAL OPTIMA; MODEL SELECTION; MULTIVARIATE DATA; NUMBER OF COMPONENTS; ROBUST ALGORITHM; THEORETIC ANALYSIS;

EID: 77649339139     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2009.12.004     Document Type: Article
Times cited : (4)

References (26)
  • 1
    • 33746365837 scopus 로고    scopus 로고
    • Unsupervised selection of a finite Dirichlet mixture model: An MML-based approach
    • Bouguila N., and Ziou D. Unsupervised selection of a finite Dirichlet mixture model: An MML-based approach. IEEE Trans. Knowledge Data Eng. 18 8 (2006) 993-1009
    • (2006) IEEE Trans. Knowledge Data Eng. , vol.18 , Issue.8 , pp. 993-1009
    • Bouguila, N.1    Ziou, D.2
  • 2
    • 0000675167 scopus 로고    scopus 로고
    • Structure learning in conditional probability models via entropic prior and parameter extinction
    • Brand M. Structure learning in conditional probability models via entropic prior and parameter extinction. Neural Computat. 11 5 (1999) 1155-1182
    • (1999) Neural Computat. , vol.11 , Issue.5 , pp. 1155-1182
    • Brand, M.1
  • 3
    • 0036684357 scopus 로고    scopus 로고
    • Blobworld: Image segmentation using expectation-maximization and its application to image querying
    • Carson, C., Belongie, S., Hellerstein, H.G., Malik, J., 2002. Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Machine Intell. 24(8), 1026-1038.
    • (2002) IEEE Trans. Pattern Anal. Machine Intell , vol.24 , Issue.8 , pp. 1026-1038
    • Carson, C.1    Belongie, S.2    Hellerstein, H.G.3    Malik, J.4
  • 4
    • 33845495645 scopus 로고    scopus 로고
    • Fuzzy c-means clustering methods for symbolic interval data
    • de Carvalho F. Fuzzy c-means clustering methods for symbolic interval data. Pattern Recognition Lett. 28 4 (2007) 423-437
    • (2007) Pattern Recognition Lett. , vol.28 , Issue.4 , pp. 423-437
    • de Carvalho, F.1
  • 5
    • 34248678480 scopus 로고    scopus 로고
    • A spatially constrained generative model and an EM algorithm for image segmentation
    • Diplaros A., Vlassis N., and Gevers T. A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans. Neural Networks 18 3 (2007) 798-808
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.3 , pp. 798-808
    • Diplaros, A.1    Vlassis, N.2    Gevers, T.3
  • 7
    • 0031192257 scopus 로고    scopus 로고
    • Clustering by competitive agglomeration
    • Frigui H., and Krishnapuram R. Clustering by competitive agglomeration. Pattern Recognition 30 7 (1997) 1109-1119
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1109-1119
    • Frigui, H.1    Krishnapuram, R.2
  • 9
    • 26844499879 scopus 로고    scopus 로고
    • Statistical analysis of network traffic for adaptive faults detection
    • Hajji H. Statistical analysis of network traffic for adaptive faults detection. IEEE Trans. Neural Networks 16 5 (2005) 1053-1063
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.5 , pp. 1053-1063
    • Hajji, H.1
  • 10
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L., and Arabie P. Comparing partitions. J. Classification 2 1 (1985) 193-218
    • (1985) J. Classification , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 11
    • 0028428774 scopus 로고
    • A database for handwritten text recognition research
    • Hull J.J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Machine Intell. 16 5 (1994) 550-554
    • (1994) IEEE Trans. Pattern Anal. Machine Intell. , vol.16 , Issue.5 , pp. 550-554
    • Hull, J.J.1
  • 12
    • 43249103345 scopus 로고    scopus 로고
    • Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation
    • Hung W.-L., Yang M.-S., and Chen D.-H. Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recognition Lett. 29 9 (2008) 1317-1325
    • (2008) Pattern Recognition Lett. , vol.29 , Issue.9 , pp. 1317-1325
    • Hung, W.-L.1    Yang, M.-S.2    Chen, D.-H.3
  • 13
    • 36549047468 scopus 로고    scopus 로고
    • Segmentation of color images via reversible jump MCMC sampling
    • Kato Z. Segmentation of color images via reversible jump MCMC sampling. Image Vision Comput. 26 3 (2008) 361-371
    • (2008) Image Vision Comput. , vol.26 , Issue.3 , pp. 361-371
    • Kato, Z.1
  • 14
    • 36549030808 scopus 로고    scopus 로고
    • A minimum description length objective function for groupwise non-rigid image registration
    • Marsland S., Twining C.J., and Taylor C.J. A minimum description length objective function for groupwise non-rigid image registration. Image Vision Comput. 26 3 (2008) 333-346
    • (2008) Image Vision Comput. , vol.26 , Issue.3 , pp. 333-346
    • Marsland, S.1    Twining, C.J.2    Taylor, C.J.3
  • 15
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Martin, D., Fowlkes, C., Tal, D., Malik, J., 2001. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Internat. Conf. on Computer Vision, pp. 416-423.
    • (2001) Proc. 8th Internat. Conf. on Computer Vision , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 16
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan G.J. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Appl. Statist. 36 3 (1987) 318-324
    • (1987) Appl. Statist. , vol.36 , Issue.3 , pp. 318-324
    • McLachlan, G.J.1
  • 17
    • 23744437299 scopus 로고    scopus 로고
    • On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples
    • McLachlan G.J., and Khan N. On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples. J. Multivariate Anal. 90 1 (2004) 90-105
    • (2004) J. Multivariate Anal. , vol.90 , Issue.1 , pp. 90-105
    • McLachlan, G.J.1    Khan, N.2
  • 18
    • 84948109721 scopus 로고    scopus 로고
    • McLachlan G.J., and Krishnan T. (Eds), Wiley, New York
    • In: McLachlan G.J., and Krishnan T. (Eds). The EM Algorithm and Extensions (1997), Wiley, New York
    • (1997) The EM Algorithm and Extensions
  • 19
    • 39549088136 scopus 로고    scopus 로고
    • Packet video error concealment with gaussian mixture models
    • Persson D., Eriksson T., and Hedelin P. Packet video error concealment with gaussian mixture models. IEEE Trans. Image Process. 17 2 (2008) 145-154
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.2 , pp. 145-154
    • Persson, D.1    Eriksson, T.2    Hedelin, P.3
  • 20
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. J. Amer. Statist. Associat. 66 336 (1971) 846-850
    • (1971) J. Amer. Statist. Associat. , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 21
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Render R.A., and Walker H.F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26 2 (1984) 195-239
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Render, R.A.1    Walker, H.F.2
  • 22
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica 14 5 (1978) 465-471
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 23
    • 0035422134 scopus 로고    scopus 로고
    • Minimum-entropy data partitioning using reversible jump Markov chain Monte Carlo
    • Roberts S., Holmes C., and Denison D. Minimum-entropy data partitioning using reversible jump Markov chain Monte Carlo. IEEE Trans. Pattern Anal. Machine Intell. 23 8 (2001) 909-914
    • (2001) IEEE Trans. Pattern Anal. Machine Intell. , vol.23 , Issue.8 , pp. 909-914
    • Roberts, S.1    Holmes, C.2    Denison, D.3
  • 25
    • 0035345442 scopus 로고    scopus 로고
    • Bayesian analysis of mixtures of factor analyzers
    • Utsugi A., and Kumagai T. Bayesian analysis of mixtures of factor analyzers. Neural Computat. 13 5 (2001) 993-1002
    • (2001) Neural Computat. , vol.13 , Issue.5 , pp. 993-1002
    • Utsugi, A.1    Kumagai, T.2
  • 26
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Wallace C.S., and Dowe D.L. Minimum message length and Kolmogorov complexity. Comput. J. 42 4 (1999) 270-283
    • (1999) Comput. J. , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.S.1    Dowe, D.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.