메뉴 건너뛰기




Volumn , Issue , 2009, Pages 215-280

Simulation-Based Bayesian Econometric Inference: Principles and Some Recent Computational Advances

Author keywords

Adaptive radial based direction sampling (ARDS); Bayesian inference and frequentist approach comparison; Bayesian learning and average US real GNP growth; Highest posterior density (HPD) region; Importance sampling computing marginal likelihood; MCMC class and Gibbs sampling algorithm; Ordinary least squares (OLS) regression; Primer on Bayesian inference; Primer on simulation methods; Simulation based Bayesian econometric inference (SBBEI)

Indexed keywords


EID: 77649270513     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470748916.ch7     Document Type: Chapter
Times cited : (10)

References (61)
  • 2
    • 0000609589 scopus 로고
    • A comment on D.V. Lindley's statistical paradox
    • Bartlett MS 1957 A comment on D.V. Lindley's statistical paradox. Biometrika 44, 533-534.
    • (1957) Biometrika , vol.44 , pp. 533-534
    • Bartlett, M.S.1
  • 3
    • 0004083728 scopus 로고    scopus 로고
    • Bayesian Inference in Dynamic Econometric Models
    • Oxford University Press.
    • Bauwens L, Lubrano M and Richard JF 1999 Bayesian Inference in Dynamic Econometric Models. Oxford University Press.
    • (1999)
    • Bauwens, L.1    Lubrano, M.2    Richard, J.F.3
  • 4
    • 4644327994 scopus 로고    scopus 로고
    • Adaptive radial-based direction sampling:some flexible and robust Monte Carlo integration methods
    • Bauwens L, Bos CS, Van Dijk HK and Van Oest RD 2004 Adaptive radial-based direction sampling:some flexible and robust Monte Carlo integration methods. Journal of Econometrics 123, 201-225.
    • (2004) Journal of Econometrics , vol.123 , pp. 201-225
    • Bauwens, L.1    Bos, C.S.2    Van Dijk, H.K.3    Van Oest, R.D.4
  • 6
    • 0043096621 scopus 로고    scopus 로고
    • Convergence assessment techniques for Markov chain Monte Carlo
    • Brooks SP and Roberts GO 1998 Convergence assessment techniques for Markov chain Monte Carlo. Statistics and Computing 8, 319-335.
    • (1998) Statistics and Computing , vol.8 , pp. 319-335
    • Brooks, S.P.1    Roberts, G.O.2
  • 8
    • 44049123923 scopus 로고
    • Bayesian inference in the tobit censored regression model
    • Chib S 1992 Bayesian inference in the tobit censored regression model. Journal of Econometrics 51, 79-99.
    • (1992) Journal of Econometrics , vol.51 , pp. 79-99
    • Chib, S.1
  • 9
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • Chib S and Greenberg E 1995 Understanding the Metropolis-Hastings algorithm. American Statistician 49, 327-335.
    • (1995) American Statistician , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 11
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
    • Damien P, Wakefield J and Walker S 1999 Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society B 61, 331-344.
    • (1999) Journal of the Royal Statistical Society B , vol.61 , pp. 331-344
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 12
    • 0004134067 scopus 로고
    • Theory of Probability
    • John Wiley & Sons, Inc.
    • De Finetti B 1974 Theory of Probability. John Wiley & Sons, Inc.
    • (1974)
    • De Finetti, B.1
  • 13
    • 0002467247 scopus 로고
    • The weighted likelihood ratio, linear hypotheses on normal location parameters
    • Dickey J 1971 The weighted likelihood ratio, linear hypotheses on normal location parameters. Annals of Statistics 42, 204-223.
    • (1971) Annals of Statistics , vol.42 , pp. 204-223
    • Dickey, J.1
  • 14
  • 19
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • Geweke J 1989 Bayesian inference in econometric models using Monte Carlo integration. Econo-metrica 57, 1317-1339.
    • (1989) Econo-metrica , vol.57 , pp. 1317-1339
    • Geweke, J.1
  • 20
    • 85071345140 scopus 로고    scopus 로고
    • Using simulation methods for Bayesian econometric models:inference, development, and communication
    • Geweke J 1999 Using simulation methods for Bayesian econometric models:inference, development, and communication. Econometric Reviews 18, 1-73.
    • (1999) Econometric Reviews , vol.18 , pp. 1-73
    • Geweke, J.1
  • 21
    • 84949782445 scopus 로고    scopus 로고
    • Contemporary Bayesian Econometrics and Statistics
    • John Wiley & Sons, Inc.
    • Geweke J 2005 Contemporary Bayesian Econometrics and Statistics. John Wiley & Sons, Inc.
    • (2005)
    • Geweke, J.1
  • 22
    • 33847395816 scopus 로고    scopus 로고
    • Interpretation and inference in mixture models:simple MCMC works
    • Geweke J 2007 Interpretation and inference in mixture models:simple MCMC works. Computational Statistics and Data Analysis 51(2), 3529-3550.
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.2 , pp. 3529-3550
    • Geweke, J.1
  • 23
    • 33947366371 scopus 로고    scopus 로고
    • Smoothly mixing regressions
    • Geweke J and Keane M 2007 Smoothly mixing regressions. Journal of Econometrics 138(1), 252-290.
    • (2007) Journal of Econometrics , vol.138 , Issue.1 , pp. 252-290
    • Geweke, J.1    Keane, M.2
  • 24
    • 0002388372 scopus 로고    scopus 로고
    • Strategies for improving MCMC
    • In, (eds Gilks W, Richardson S and Spiegelhalter D). Chapman and Hall.
    • Gilks WR and Roberts GO 1996 Strategies for improving MCMC. In Markov Chain Monte Carlo in Practice (eds Gilks W, Richardson S and Spiegelhalter D). Chapman and Hall.
    • (1996) Markov Chain Monte Carlo in Practice
    • Gilks, W.R.1    Roberts, G.O.2
  • 26
    • 57349151463 scopus 로고    scopus 로고
    • Computing power and the power of econometrics
    • Hamilton JD 2006 Computing power and the power of econometrics. Medium Econometrische Toepassingen 14(2), 32-38.
    • (2006) Medium Econometrische Toepassingen , vol.14 , Issue.2 , pp. 32-38
    • Hamilton, J.D.1
  • 28
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK 1970 Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 29
    • 0001025439 scopus 로고
    • A conditional probit model for qualitative choice:discrete decisions recognizing interdependence and heterogeneous preferences
    • Hausman JA and Wise DA 1978 A conditional probit model for qualitative choice:discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica 46, 403-426.
    • (1978) Econometrica , vol.46 , pp. 403-426
    • Hausman, J.A.1    Wise, D.A.2
  • 30
    • 34248561402 scopus 로고    scopus 로고
    • On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank:an application of flexible sampling methods using neural networks
    • Hoogerheide LF, Kaashoek JF and Van Dijk HK 2007 On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank:an application of flexible sampling methods using neural networks. Journal of Econometrics 139(1), 154-180.
    • (2007) Journal of Econometrics , vol.139 , Issue.1 , pp. 154-180
    • Hoogerheide, L.F.1    Kaashoek, J.F.2    Van Dijk, H.K.3
  • 32
    • 0002662247 scopus 로고
    • Bayesian estimates of equation system parameters:an application of integration by Monte Carlo
    • Kloek T and Van Dijk HK 1978 Bayesian estimates of equation system parameters:an application of integration by Monte Carlo. Econometrica 46, 1-20.
    • (1978) Econometrica , vol.46 , pp. 1-20
    • Kloek, T.1    Van Dijk, H.K.2
  • 33
    • 0346548265 scopus 로고    scopus 로고
    • Bayesian Econometrics
    • John Wiley & Sons, Ltd
    • Koop G 2003 Bayesian Econometrics. John Wiley & Sons, Ltd.
    • (2003)
    • Koop, G.1
  • 34
    • 84924444260 scopus 로고    scopus 로고
    • Bayesian Econometric Methods
    • Cambridge University Press.
    • Koop G, Poirier DL and Tobias JL 2007 Bayesian Econometric Methods. Cambridge University Press.
    • (2007)
    • Koop, G.1    Poirier, D.L.2    Tobias, J.L.3
  • 35
    • 24944495699 scopus 로고    scopus 로고
    • An Introduction to Modern Bayesian Econometrics
    • Blackwell
    • Lancaster T 2004 An Introduction to Modern Bayesian Econometrics. Blackwell.
    • (2004)
    • Lancaster, T.1
  • 36
    • 0004312378 scopus 로고
    • Simulation Modeling and Analysis
    • McGraw-Hill
    • Law AM and Kelton WD 1991 Simulation Modeling and Analysis. McGraw-Hill.
    • (1991)
    • Law, A.M.1    Kelton, W.D.2
  • 38
    • 0002986905 scopus 로고
    • A pseudo-random number generator for the System 360
    • Lewis PAW, Goodman AS and Miller JM 1969 A pseudo-random number generator for the System 360. IBM Systems Journal 8(2), 136-146.
    • (1969) IBM Systems Journal , vol.8 , Issue.2 , pp. 136-146
    • Lewis, P.A.W.1    Goodman, A.S.2    Miller, J.M.3
  • 39
    • 0000810338 scopus 로고
    • A statistical paradox
    • Lindley DV 1957 A statistical paradox. Biometrika 44, 187-192.
    • (1957) Biometrika , vol.44 , pp. 187-192
    • Lindley, D.V.1
  • 40
    • 43949158952 scopus 로고
    • An exact likelihood analysis of the multinomial probit model
    • McCulloch R and Rossi PE 1994 An exact likelihood analysis of the multinomial probit model. Journal of Econometrics 64, 207-240.
    • (1994) Journal of Econometrics , vol.64 , pp. 207-240
    • McCulloch, R.1    Rossi, P.E.2
  • 41
    • 0001434493 scopus 로고    scopus 로고
    • A Bayesian analysis of the multinomial probit model with fully identified parameters
    • McCulloch R, Polson NG and Rossi PE 2000 A Bayesian analysis of the multinomial probit model with fully identified parameters. Journal of Econometrics 99, 173-193.
    • (2000) Journal of Econometrics , vol.99 , pp. 173-193
    • McCulloch, R.1    Polson, N.G.2    Rossi, P.E.3
  • 45
    • 0003781238 scopus 로고    scopus 로고
    • Markov Chains
    • Cambridge University Press
    • Norris JR 1997 Markov Chains. Cambridge University Press.
    • (1997)
    • Norris, J.R.1
  • 48
    • 0000940729 scopus 로고
    • Facilitating the Gibbs sampler:the Gibbs stopper and the griddy-Gibbs sampler
    • Ritter C and Tanner MA 1992 Facilitating the Gibbs sampler:the Gibbs stopper and the griddy-Gibbs sampler. Journal of the American Statistical Association 87, 861-868.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 861-868
    • Ritter, C.1    Tanner, M.A.2
  • 49
    • 0003897447 scopus 로고    scopus 로고
    • Introduction to Probability Models
    • Academic Press
    • Ross SM 1997 Introduction to Probability Models. Academic Press.
    • (1997)
    • Ross, S.M.1
  • 50
    • 84948733851 scopus 로고    scopus 로고
    • Bayesian Statistics and Marketing
    • John Wiley & Sons, Ltd.
    • Rossi PE, Allenby GM and McCulloch R 2005 Bayesian Statistics and Marketing. John Wiley & Sons, Ltd.
    • (2005)
    • Rossi, P.E.1    Allenby, G.M.2    McCulloch, R.3
  • 51
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • Smith AFM and Roberts GO 1993 Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society B 55, 3-23.
    • (1993) Journal of the Royal Statistical Society B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 52
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner MA and Wong WH 1987 The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82, 528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 53
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • Tierney L 1994 Markov chains for exploring posterior distributions (with discussion). Annals of Statistics 22, 1701-1762.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 54
    • 84897077786 scopus 로고    scopus 로고
    • Some remarks on the simulation revolution in Bayesian econometric inference
    • Van Dijk HK 1999 Some remarks on the simulation revolution in Bayesian econometric inference. Econometric Reviews 18(1), 105-112.
    • (1999) Econometric Reviews , vol.18 , Issue.1 , pp. 105-112
    • Van Dijk, H.K.1
  • 55
    • 0000897731 scopus 로고
    • Further experience in Bayesian analysis using Monte Carlo integration
    • Van Dijk HK and Kloek T 1980 Further experience in Bayesian analysis using Monte Carlo integration. Journal of Econometrics 14, 307-328.
    • (1980) Journal of Econometrics , vol.14 , pp. 307-328
    • Van Dijk, H.K.1    Kloek, T.2
  • 56
    • 0039764310 scopus 로고
    • Experiments with some alternatives for simple importance sampling in Monte Carlo integration
    • In, (eds Bernardo JM, Degroot MH, Lindley DV and Smith AFM). North-Holland.
    • Van Dijk HK and Kloek T 1984 Experiments with some alternatives for simple importance sampling in Monte Carlo integration. In Bayesian Statistics, Vol. 2 (eds Bernardo JM, Degroot MH, Lindley DV and Smith AFM). North-Holland.
    • (1984) Bayesian Statistics , vol.2
    • Van Dijk, H.K.1    Kloek, T.2
  • 58
    • 21844487977 scopus 로고
    • Computing Bayes factors using a generalization of the Savage-Dickey density ratio
    • Verdinelli I and Wasserman L 1995 Computing Bayes factors using a generalization of the Savage-Dickey density ratio. Journal of the American Statistical Association 90, 614-618.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 614-618
    • Verdinelli, I.1    Wasserman, L.2
  • 60
    • 0041438105 scopus 로고    scopus 로고
    • Looking at Markov samplers through cusum path plots:a simple diagnostic idea
    • Yu B and Mykland P 1998 Looking at Markov samplers through cusum path plots:a simple diagnostic idea. Statistics and Computing 8, 275-286.
    • (1998) Statistics and Computing , vol.8 , pp. 275-286
    • Yu, B.1    Mykland, P.2
  • 61
    • 0031037819 scopus 로고    scopus 로고
    • Density estimation through convex combinations of densities; approximation and estimation bounds
    • Zeevi AJ and Meir R 1997 Density estimation through convex combinations of densities; approximation and estimation bounds. Neural Networks 10, 99-106.
    • (1997) Neural Networks , vol.10 , pp. 99-106
    • Zeevi, A.J.1    Meir, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.