메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 15-30

A robust gene selection method for microarray-based cancer classification

Author keywords

Cancer classification; Dependent degree; Feature selection; Machine learning; Microarrays; Rough sets

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; BREAST CANCER; CANCER CLASSIFICATION; CENTRAL NERVOUS SYSTEM TUMOR; CLINICAL ASSESSMENT TOOL; COLON TUMOR; CONTROLLED STUDY; GENE EXPRESSION; GENETIC ANALYSIS; HUMAN; LEUKEMIA; LUNG CANCER; MICROARRAY ANALYSIS; PROSTATE CANCER; DNA MICROARRAY; FEATURE SELECTION; ROUGH SET; SENSITIVITY ANALYSIS; UNCERTAINTY;

EID: 77649267552     PISSN: 11769351     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/cin.s3794     Document Type: Article
Times cited : (52)

References (20)
  • 1
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531-7.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 2
    • 77649243439 scopus 로고    scopus 로고
    • Microarray-Based Cancer Prediction Using Soft Computing Approach
    • Wang X, Gotoh O. Microarray-Based Cancer Prediction Using Soft Computing Approach. Cancer Informatics. 2009;7:123-39.
    • (2009) Cancer Informatics , vol.7 , pp. 123-139
    • Wang, X.1    Gotoh, O.2
  • 3
    • 0036083435 scopus 로고    scopus 로고
    • Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns
    • Li J, Wong L. Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics. 2002;18(5):725-34.
    • (2002) Bioinformatics , vol.18 , Issue.5 , pp. 725-734
    • Li, J.1    Wong, L.2
  • 5
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U, Barkai N, Notterman DA, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A. 1999;96(12):6745-50.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3
  • 6
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415(6870):436-42.
    • (2002) Nature , vol.415 , Issue.6870 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3
  • 7
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68-74.
    • (2002) Nat Med , vol.8 , Issue.1 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3
  • 8
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon GJ, Jensen RV, Hsiao LL, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002;62(17):4963-7.
    • (2002) Cancer Res , vol.62 , Issue.17 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.L.3
  • 9
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002;1(2):203-9.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 203-209
    • Singh, D.1    Febbo, P.G.2    Ross, K.3
  • 10
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van 't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530- 6.
    • (2002) Nature , vol.415 , Issue.6871 , pp. 530-536
    • van 't Veer, L.J.1    Dai, H.2    van de Vijver, M.J.3
  • 11
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41-7.
    • (2002) Nat Genet , vol.30 , Issue.1 , pp. 41-47
    • Armstrong, S.A.1    Staunton, J.E.2    Silverman, L.B.3
  • 15
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu H, Li J, Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform. 2002;13:51-60.
    • (2002) Genome Inform , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 16
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J. Induction of decision trees. Machine Learning. 1986;1:81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 17
    • 17444386734 scopus 로고    scopus 로고
    • HykGene: A hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data
    • Wang Y, Makedon FS, Ford JC, Pearlman J. HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics. 2005;21(8):1530-7.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1530-1537
    • Wang, Y.1    Makedon, F.S.2    Ford, J.C.3    Pearlman, J.4
  • 18
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and Empirical Analysis of ReliefF and RReliefF
    • Robnik-Sikonja M, Kononenko I. Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning Journal. 2003;53:23-69.
    • (2003) Machine Learning Journal , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.