-
1
-
-
0000548789
-
An equation for hyperchaos
-
Rössler O.E. An equation for hyperchaos. Phys. Lett. A 71 (1979) 155-157
-
(1979)
Phys. Lett. A
, vol.71
, pp. 155-157
-
-
Rössler, O.E.1
-
2
-
-
40549092311
-
Dynamics of a hyperchaotic lorenz system
-
Barboza R. Dynamics of a hyperchaotic lorenz system. Internat. J. Bifur. Chaos 17 (2007) 4285-4294
-
(2007)
Internat. J. Bifur. Chaos
, vol.17
, pp. 4285-4294
-
-
Barboza, R.1
-
3
-
-
41649108176
-
A hyperchaos generated from Lorzen system
-
Wang X., and Wang M. A hyperchaos generated from Lorzen system. Physica A 387 (2008) 3751-3758
-
(2008)
Physica A
, vol.387
, pp. 3751-3758
-
-
Wang, X.1
Wang, M.2
-
5
-
-
60549101561
-
Hyperchaotic attractors from a linearly controlled Lorenz system
-
Yang Q., Zhang K., and Chen G. Hyperchaotic attractors from a linearly controlled Lorenz system. Nonlinear Anal. RWA 10 (2009) 1601-1617
-
(2009)
Nonlinear Anal. RWA
, vol.10
, pp. 1601-1617
-
-
Yang, Q.1
Zhang, K.2
Chen, G.3
-
6
-
-
17844409309
-
Controlling a unified chaotic system to hyperchaotic
-
Li Y., Chen G., and Tang W.K.S. Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Syst.-II 52 (2005) 204-207
-
(2005)
IEEE Trans. Circuits Syst.-II
, vol.52
, pp. 204-207
-
-
Li, Y.1
Chen, G.2
Tang, W.K.S.3
-
7
-
-
68049144648
-
A hyperchaotic system from a chaotic system with one saddle and two stable node-foci
-
Yang Q., and Liu Y. A hyperchaotic system from a chaotic system with one saddle and two stable node-foci. J. Math. Anal. Appl. 360 (2009) 293-306
-
(2009)
J. Math. Anal. Appl.
, vol.360
, pp. 293-306
-
-
Yang, Q.1
Liu, Y.2
-
8
-
-
0035640984
-
Bound for attractors and the existence of homoclinic orbit in the Lorenz system
-
Leonov G. Bound for attractors and the existence of homoclinic orbit in the Lorenz system. J. Appl. Math. Mech. 65 (2001) 19-32
-
(2001)
J. Appl. Math. Mech.
, vol.65
, pp. 19-32
-
-
Leonov, G.1
-
9
-
-
84984076276
-
Attractor localization of the Lorenz system
-
Leonov G., Bunin A., and Koksch N. Attractor localization of the Lorenz system. ZAMM 67 (1987) 649-656
-
(1987)
ZAMM
, vol.67
, pp. 649-656
-
-
Leonov, G.1
Bunin, A.2
Koksch, N.3
-
10
-
-
33750613088
-
On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization
-
Liao X. On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization. Sci. China Ser. E Inform. Sci. 34 (2004) 1404-1419
-
(2004)
Sci. China Ser. E Inform. Sci.
, vol.34
, pp. 1404-1419
-
-
Liao, X.1
-
11
-
-
62949192764
-
Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system, Chaos
-
Li D., Wu X., and Lu J. Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system, Chaos. Solitons Fractals 39 (2009) 1290-1296
-
(2009)
Solitons Fractals
, vol.39
, pp. 1290-1296
-
-
Li, D.1
Wu, X.2
Lu, J.3
-
12
-
-
0001156502
-
Onset of stochasticity in decay confinement of parametric instability
-
Pikovski A.S., Rabinovich M.I., and Trakhtengerts V.Y. Onset of stochasticity in decay confinement of parametric instability. Sov. Phys. JETP 47 (1978) 715-719
-
(1978)
Sov. Phys. JETP
, vol.47
, pp. 715-719
-
-
Pikovski, A.S.1
Rabinovich, M.I.2
Trakhtengerts, V.Y.3
-
13
-
-
0000241853
-
Deterministic non-periodic flows
-
Lorenz E.N. Deterministic non-periodic flows. J. Atmospheric Sci. 20 (1963) 130-141
-
(1963)
J. Atmospheric Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
16
-
-
0035275768
-
Integrals of motion and semipermeable surfaces to bound the amplitude of a plasma instability
-
Neukirch S. Integrals of motion and semipermeable surfaces to bound the amplitude of a plasma instability. Phys. Rev. E 63 (2001) 036202
-
(2001)
Phys. Rev. E
, vol.63
, pp. 036202
-
-
Neukirch, S.1
|