메뉴 건너뛰기




Volumn 80, Issue 1, 2010, Pages 111-117

Coverage properties of beta estimated prediction intervals for multimodal recovery rates

Author keywords

Bootstrap prediction intervals; Mixture of beta components; Recovery rates

Indexed keywords


EID: 77649108565     PISSN: 00949655     EISSN: 15635163     Source Type: Journal    
DOI: 10.1080/00949650802508909     Document Type: Article
Times cited : (1)

References (14)
  • 1
    • 0001925391 scopus 로고
    • Techniques for verifying the accuracy of risk measurement models
    • P.H. Kupiec, Techniques for verifying the accuracy of risk measurement models, J. Derivatives 2 (1995), pp. 73-84.
    • (1995) J. Derivatives , vol.2 , pp. 73-84
    • Kupiec, P.H.1
  • 2
    • 0001885070 scopus 로고
    • Measuring loss on defaulted bank loans: A 24-year study
    • E. Asarnow and D. Edwards, Measuring loss on defaulted bank loans: a 24-year study, J. Comm. Lend. 77 (1995), pp. 11-23.
    • (1995) J. Comm. Lend. , vol.77 , pp. 11-23
    • Asarnow, E.1    Edwards, D.2
  • 4
    • 34548693672 scopus 로고    scopus 로고
    • Estimation of recovery rate densities: Nonparametric and semi-parametric approaches versus industry practice
    • E.Altman et al., Eds., Risk Books, London
    • M. Hagmann, O. Renault, and O. Scaillet, Estimation of recovery rate densities: nonparametric and semi-parametric approaches versus industry practice, in Recovery Risk: The Next Challenger in Credit Risk Management, E.Altman et al., Eds., Risk Books, London, 2005, pp. 323-346.
    • (2005) Recovery Risk: The Next Challenger In Credit Risk Management , pp. 323-346
    • Hagmann, M.1    Renault, O.2    Scaillet, O.3
  • 5
    • 6444225982 scopus 로고    scopus 로고
    • On the way to recovery: A nonparametric bias free estimation of recovery rate densities
    • O. Renault and O. Scaillet, On the way to recovery: a nonparametric bias free estimation of recovery rate densities, J. Banking Finance 28(12) (2004), pp. 2915-2931.
    • (2004) J. Banking Finance , vol.28 , Issue.12 , pp. 2915-2931
    • Renault, O.1    Scaillet, O.2
  • 8
    • 78649788495 scopus 로고    scopus 로고
    • Assessing the number of components in mixture models: A review
    • A. Oliveira-Brochado and F.V. Martins, Assessing the number of components in mixture models: a review, FEP Working Papers, 194, 2005.
    • (2005) Fep Working Papers , pp. 194
    • Oliveira-Brochado, A.1    Martins, F.V.2
  • 9
    • 34648814044 scopus 로고    scopus 로고
    • An effective method for selecting the number of components in density mixtures
    • S. Whitaker and T.C.M. Lee, An effective method for selecting the number of components in density mixtures, J. Stat. Comput. Simul. 77(10) (2007), pp. 907-914.
    • (2007) J. Stat. Comput. Simul. , vol.77 , Issue.10 , pp. 907-914
    • Whitaker, S.1    Lee, T.C.M.2
  • 10
    • 18744410117 scopus 로고    scopus 로고
    • Applications of beta-mixture models in bioinformatics
    • Y. Ji, C. Wu, P. Liu, J. Wang, and K.R. Coombes, Applications of beta-mixture models in bioinformatics, Bioinformatics 21(9) (2005), pp. 2118-2122.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 2118-2122
    • Ji, Y.1    Wu, C.2    Liu, P.3    Wang, J.4    Coombes, K.R.5
  • 11
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. Roy. Stat. Soc. B 39 (1977), pp. 1-38.
    • (1977) J. Roy. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 12
    • 0036146882 scopus 로고    scopus 로고
    • Bootstrap prediction intervals for single period regression forecasts
    • J.P. Lam and M.R. Veall, Bootstrap prediction intervals for single period regression forecasts, Int. J. Forecast. 18 (2002), pp. 125-130.
    • (2002) Int. J. Forecast , vol.18 , pp. 125-130
    • Lam, J.P.1    Veall, M.R.2
  • 14
    • 0001523531 scopus 로고
    • Bootstrap prediction intervals for regression
    • R.A. Stine, Bootstrap prediction intervals for regression, J. Amer. Stat. Assoc. Theory Meth. 80(392) (1985), pp. 1026-1031.
    • (1985) J. Amer. Stat. Assoc. Theory Meth. , vol.80 , Issue.392 , pp. 1026-1031
    • Stine, R.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.