-
1
-
-
0001925391
-
Techniques for verifying the accuracy of risk measurement models
-
P.H. Kupiec, Techniques for verifying the accuracy of risk measurement models, J. Derivatives 2 (1995), pp. 73-84.
-
(1995)
J. Derivatives
, vol.2
, pp. 73-84
-
-
Kupiec, P.H.1
-
2
-
-
0001885070
-
Measuring loss on defaulted bank loans: A 24-year study
-
E. Asarnow and D. Edwards, Measuring loss on defaulted bank loans: a 24-year study, J. Comm. Lend. 77 (1995), pp. 11-23.
-
(1995)
J. Comm. Lend.
, vol.77
, pp. 11-23
-
-
Asarnow, E.1
Edwards, D.2
-
4
-
-
34548693672
-
Estimation of recovery rate densities: Nonparametric and semi-parametric approaches versus industry practice
-
E.Altman et al., Eds., Risk Books, London
-
M. Hagmann, O. Renault, and O. Scaillet, Estimation of recovery rate densities: nonparametric and semi-parametric approaches versus industry practice, in Recovery Risk: The Next Challenger in Credit Risk Management, E.Altman et al., Eds., Risk Books, London, 2005, pp. 323-346.
-
(2005)
Recovery Risk: The Next Challenger In Credit Risk Management
, pp. 323-346
-
-
Hagmann, M.1
Renault, O.2
Scaillet, O.3
-
5
-
-
6444225982
-
On the way to recovery: A nonparametric bias free estimation of recovery rate densities
-
O. Renault and O. Scaillet, On the way to recovery: a nonparametric bias free estimation of recovery rate densities, J. Banking Finance 28(12) (2004), pp. 2915-2931.
-
(2004)
J. Banking Finance
, vol.28
, Issue.12
, pp. 2915-2931
-
-
Renault, O.1
Scaillet, O.2
-
6
-
-
58849090877
-
What do we know about loss given default?
-
E. Altman et al., Eds., Risk Books, London
-
T. Schuermann, What do we know about loss given default? in Recovery Risk: The Next Challenger in Credit Risk Management, E. Altman et al., Eds., Risk Books, London, 2005, pp. 3-24.
-
(2005)
Recovery Risk: The Next Challenger In Credit Risk Management
, pp. 3-24
-
-
Schuermann, T.1
-
8
-
-
78649788495
-
Assessing the number of components in mixture models: A review
-
A. Oliveira-Brochado and F.V. Martins, Assessing the number of components in mixture models: a review, FEP Working Papers, 194, 2005.
-
(2005)
Fep Working Papers
, pp. 194
-
-
Oliveira-Brochado, A.1
Martins, F.V.2
-
9
-
-
34648814044
-
An effective method for selecting the number of components in density mixtures
-
S. Whitaker and T.C.M. Lee, An effective method for selecting the number of components in density mixtures, J. Stat. Comput. Simul. 77(10) (2007), pp. 907-914.
-
(2007)
J. Stat. Comput. Simul.
, vol.77
, Issue.10
, pp. 907-914
-
-
Whitaker, S.1
Lee, T.C.M.2
-
10
-
-
18744410117
-
Applications of beta-mixture models in bioinformatics
-
Y. Ji, C. Wu, P. Liu, J. Wang, and K.R. Coombes, Applications of beta-mixture models in bioinformatics, Bioinformatics 21(9) (2005), pp. 2118-2122.
-
(2005)
Bioinformatics
, vol.21
, Issue.9
, pp. 2118-2122
-
-
Ji, Y.1
Wu, C.2
Liu, P.3
Wang, J.4
Coombes, K.R.5
-
11
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. Roy. Stat. Soc. B 39 (1977), pp. 1-38.
-
(1977)
J. Roy. Stat. Soc. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
12
-
-
0036146882
-
Bootstrap prediction intervals for single period regression forecasts
-
J.P. Lam and M.R. Veall, Bootstrap prediction intervals for single period regression forecasts, Int. J. Forecast. 18 (2002), pp. 125-130.
-
(2002)
Int. J. Forecast
, vol.18
, pp. 125-130
-
-
Lam, J.P.1
Veall, M.R.2
-
14
-
-
0001523531
-
Bootstrap prediction intervals for regression
-
R.A. Stine, Bootstrap prediction intervals for regression, J. Amer. Stat. Assoc. Theory Meth. 80(392) (1985), pp. 1026-1031.
-
(1985)
J. Amer. Stat. Assoc. Theory Meth.
, vol.80
, Issue.392
, pp. 1026-1031
-
-
Stine, R.A.1
|