메뉴 건너뛰기




Volumn 1, Issue , 2004, Pages 132-135

Novel algorithm for independent component analysis with flexible score functions

Author keywords

Flexible Score Functions; Independent Component Analysis; Maximum Likelihood; Pearson System

Indexed keywords

BLIND SOURCE SEPARATION; COMPUTATIONAL METHODS; COMPUTER SIMULATION; FUNCTIONS; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DISTRIBUTIONS; INDEPENDENT COMPONENT ANALYSIS; SENSORS; SIGNAL PROCESSING;

EID: 7744226641     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (10)
  • 1
    • 0028416938 scopus 로고
    • Independent component analysis, A new concept?
    • P.Comon, Independent component analysis, A new concept?, Signal Processing[J],vol.36(3):pp.287-314,1994
    • (1994) Signal Processing[J] , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 2
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • A. Bell and T. Sejnowski, An information maximization approach to blind separation and blind deconvolution, Neural Computation[J],vol.7(6):pp.1129-1159,1995
    • (1995) Neural Computation[J] , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 4
    • 0345019851 scopus 로고    scopus 로고
    • Learned parameter mixture based ICA algorithm
    • L. Xu, C, Cheung and S. Amari, Learned parameter mixture based ICA algorithm. Neurocomputing [J],vol.22(1):pp.69-80,1998
    • (1998) Neurocomputing [J] , vol.22 , Issue.1 , pp. 69-80
    • Xu, L.1    Cheung, C.2    Amari, S.3
  • 5
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S. Amari, Natural gradient works efficiently in learning, Neural Computation[J],vol.10(2):pp.251-276,1998
    • (1998) Neural Computation[J] , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.1
  • 6
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extend infomax algorithm for mixed sub-Gaussissn and super-Gaussian sources
    • T.-W. Lee,M. Girolami and T. Sejnowski, Independent component analysis using an extend infomax algorithm for mixed sub-Gaussissn and super-Gaussian sources, Neural Computation[J],vol.11(2):pp.417-441,1998
    • (1998) Neural Computation[J] , vol.11 , Issue.2 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.3
  • 7
    • 7744225338 scopus 로고    scopus 로고
    • Grading learning for blind source separation
    • X.D. Zhang, X.L. Zhu and Z. Bao, Grading learning for blind source separation, Science in China (Series F)[J),vol.46(1):pp.31-44, 2003
    • (2003) Science in China (Series F)[J , vol.46 , Issue.1 , pp. 31-44
    • Zhang, X.D.1    Zhu, X.L.2    Bao, Z.3
  • 9
    • 0036531349 scopus 로고    scopus 로고
    • Blind separation methods based on pearson system and its extensions
    • J. Karvanen and V. Koivunen, Blind Separation Methods Based on Pearson system and its Extensions, Signal Processing[J],vol.82(4):pp.663-673,2002
    • (2002) Signal Processing[J] , vol.82 , Issue.4 , pp. 663-673
    • Karvanen, J.1    Koivunen, V.2
  • 10
    • 0033357311 scopus 로고    scopus 로고
    • A stable and robust ICA algorithm based on t-distribution and generalized Gaussian distribution models
    • New York:IEEE Press[J]
    • [10| J. Cao and N. Murata, A stable and robust ICA algorithm based on t-distribution and generalized Gaussian distribution models, In Neural Networks Signal Processing. New York:IEEE Press[J],vol.2 (IX):pp.719-722,1999
    • (1999) Neural Networks Signal Processing , vol.2 , Issue.9 , pp. 719-722
    • Cao, J.1    Murata, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.