-
1
-
-
0032377357
-
Approximate is better than "exact" for interval estimation of binomial proportions
-
Agresti, A. & Coull, B.A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. Amer. Statist., 52(2), 119-126.
-
(1998)
Amer. Statist.
, vol.52
, Issue.2
, pp. 119-126
-
-
Agresti, A.1
Coull, B.A.2
-
2
-
-
0000757715
-
Improved confidence statements for the binomial parameter
-
Angus, J.E. & Schafer, R.E. (1984). Improved confidence statements for the binomial parameter. Amer. Statist., 38(3), 189-191.
-
(1984)
Amer. Statist.
, vol.38
, Issue.3
, pp. 189-191
-
-
Angus, J.E.1
Schafer, R.E.2
-
4
-
-
67649373558
-
Reference analysis
-
Eds. D.K. Dey & C.R. Rao Amsterdam: Elsevier
-
Bernardo, J.M. (2005). Reference analysis. In Bayesian Thinking: Modeling and Computation, Eds. D.K. Dey & C.R. Rao, pp. 17-90. Amsterdam: Elsevier.
-
(2005)
Bayesian Thinking: Modeling and Computation
, pp. 17-90
-
-
Bernardo, J.M.1
-
5
-
-
0000460102
-
Interval estimation for a binomial proportion (with discussion)
-
Brown, L.D., Cai, T. & DasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion). Statist. Sci., 16(2), 101-133.
-
(2001)
Statist. Sci.
, vol.16
, Issue.2
, pp. 101-133
-
-
Brown, L.D.1
Cai, T.2
DasGupta, A.3
-
7
-
-
0042745956
-
Evaluating interval forecasts
-
Christofferson, P. (1998). Evaluating interval forecasts. Internat. Econom. Rev., 39, 841-862.
-
(1998)
Internat. Econom. Rev.
, vol.39
, pp. 841-862
-
-
Christofferson, P.1
-
8
-
-
0001072895
-
The use of confidence or fiducial limits illustrated in the case of the binomial
-
Clopper, C.J. & Pearson, E.S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26, 404-416.
-
(1934)
Biometrika
, vol.26
, pp. 404-416
-
-
Clopper, C.J.1
Pearson, E.S.2
-
9
-
-
4444289240
-
CAViaR: conditional autoregressive value at risk by regression quantiles
-
Engle, R.F. & Manganelli, S. (2004). CAViaR: conditional autoregressive value at risk by regression quantiles. J. Bus. Econom. Statist., 22, 367-381.
-
(2004)
J. Bus. Econom. Statist.
, vol.22
, pp. 367-381
-
-
Engle, R.F.1
Manganelli, S.2
-
12
-
-
0020741664
-
If nothing goes wrong, is everything all right?
-
Hanley, J.A. & Lippman-Hand, A. (1983). If nothing goes wrong, is everything all right? J. Amer. Med. Assoc., 249(13), 1743-1745.
-
(1983)
J. Amer. Med. Assoc.
, vol.249
, Issue.13
, pp. 1743-1745
-
-
Hanley, J.A.1
Lippman-Hand, A.2
-
13
-
-
0031527873
-
A look at the Rule of Three
-
Jovanovic, B.D. & Levy, P.S. (1997). A look at the Rule of Three. Amer. Statist., 51(2), 137-139.
-
(1997)
Amer. Statist.
, vol.51
, Issue.2
, pp. 137-139
-
-
Jovanovic, B.D.1
Levy, P.S.2
-
14
-
-
0001925391
-
Techniques for verifying the accuracy of risk measurement models
-
Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement models. J. Derivatives, 3, 73-84.
-
(1995)
J. Derivatives
, vol.3
, pp. 73-84
-
-
Kupiec, P.H.1
-
15
-
-
78651024973
-
The combination of probabilities arising from data in discrete distributions
-
Lancaster, H.O. (1949). The combination of probabilities arising from data in discrete distributions. Biometrika, 36(3/4), 370-382.
-
(1949)
Biometrika
, vol.36
, Issue.3-4
, pp. 370-382
-
-
Lancaster, H.O.1
-
16
-
-
0000237582
-
Significance tests in discrete distributions
-
Lancaster, H.O. (1961). Significance tests in discrete distributions. J. Amer. Statist. Assoc., 56(294), 223-234.
-
(1961)
J. Amer. Statist. Assoc.
, vol.56
, Issue.294
, pp. 223-234
-
-
Lancaster, H.O.1
-
17
-
-
0030536433
-
A comparison of approximate interval estimators for the Bernoulli parameter
-
Leemis, L.M. & Trivedi, K.S. (1996). A comparison of approximate interval estimators for the Bernoulli parameter. Amer. Statist., 50(1), 63-68.
-
(1996)
Amer. Statist.
, vol.50
, Issue.1
, pp. 63-68
-
-
Leemis, L.M.1
Trivedi, K.S.2
-
18
-
-
0000260307
-
Confidence intervals for a binomial parameter after observing no successes
-
Louis, T.A. (1981). Confidence intervals for a binomial parameter after observing no successes. Amer. Statist., 35(3), 154-154.
-
(1981)
Amer. Statist.
, vol.35
, Issue.3
, pp. 154-1154
-
-
Louis, T.A.1
-
20
-
-
0001386446
-
Relationships between Bayesian and confidence limits for prediction
-
Thatcher, A.R. (1964). Relationships between Bayesian and confidence limits for prediction. J. Roy. Statist. Soc. Ser. B, 26, 126-210.
-
(1964)
J. Roy. Statist. Soc. Ser. B
, vol.26
, pp. 126-210
-
-
Thatcher, A.R.1
-
21
-
-
39049108737
-
A comparison of Bayes-Laplace, Jeffreys, and other priors: the case of zero events
-
Tuyl, F., Gerlach, R. & Mengersen, K. (2008). A comparison of Bayes-Laplace, Jeffreys, and other priors: the case of zero events. Amer. Statist., 62(1), 40-44.
-
(2008)
Amer. Statist.
, vol.62
, Issue.1
, pp. 40-44
-
-
Tuyl, F.1
Gerlach, R.2
Mengersen, K.3
-
22
-
-
84946650481
-
Probable inference, the law of succession, and statistical inference
-
Wilson, E.B. (1927). Probable inference, the law of succession, and statistical inference. J. Amer. Statist. Assoc., 22(158), 209-212.
-
(1927)
J. Amer. Statist. Assoc.
, vol.22
, Issue.158
, pp. 209-212
-
-
Wilson, E.B.1
-
23
-
-
0036003715
-
The role of informative priors in zero-numerator problems: being conservative versus being candid
-
Winkler, R.L., Smith, J.E. & Fryback, D.G. (2002). The role of informative priors in zero-numerator problems: being conservative versus being candid. Amer. Statist., 56(1), 1-4.
-
(2002)
Amer. Statist.
, vol.56
, Issue.1
, pp. 1-4
-
-
Winkler, R.L.1
Smith, J.E.2
Fryback, D.G.3
|