메뉴 건너뛰기




Volumn 61, Issue 5, 2009, Pages 587-600

The maximum likelihood ensemble filter performances in chaotic systems

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; CHAOTIC DYNAMICS; ENSEMBLE FORECASTING; ESTIMATION METHOD; FILTER; MAXIMUM LIKELIHOOD ANALYSIS; OPTIMIZATION; PERTURBATION;

EID: 77249135825     PISSN: 02806495     EISSN: 16000870     Source Type: Journal    
DOI: 10.1111/j.1600-0870.2009.00408.x     Document Type: Article
Times cited : (24)

References (38)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J. L. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev. 129, 2884-2903.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 2
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects
    • Bishop, C., Etherton, J. and Majumdar, S. J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Wea. Rev. 129, 420-436.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 420-436
    • Bishop, C.1    Etherton, J.2    Majumdar, S.J.3
  • 3
    • 46449116212 scopus 로고    scopus 로고
    • Data assimilation as a nonlinear dynamical system problem: stability and convergence of the prediction-assimilation system
    • Carrassi, A., Ghil, M., Trevisan, A. and Uboldi, F. 2008a. Data assimilation as a nonlinear dynamical system problem: stability and convergence of the prediction-assimilation system. Chaos 18, 023112.
    • (2008) Chaos , vol.18 , pp. 023112
    • Carrassi, A.1    Ghil, M.2    Trevisan, A.3    Uboldi, F.4
  • 4
    • 50949090465 scopus 로고    scopus 로고
    • Model error and sequential data assimilation: a deterministic formulation
    • Carrassi, A., Vannitsem, S. and Nicolis, C. 2008b. Model error and sequential data assimilation: a deterministic formulation. Q. J. R. Meterol. Soc. 134, 1297-1313.
    • (2008) Q. J. R. Meterol. Soc. , vol.134 , pp. 1297-1313
    • Carrassi, A.1    Vannitsem, S.2    Nicolis, C.3
  • 5
    • 48649107504 scopus 로고    scopus 로고
    • Development of an aerosol retrieval method: description and preliminary tests
    • Carrio, G. G., Cotton, W. R., Zupanski, D. and Zupanski, M. 2008. Development of an aerosol retrieval method: description and preliminary tests. J. Appl. Meteorol. Climatol. 47, 2760-2776
    • (2008) J. Appl. Meteorol. Climatol. , vol.47 , pp. 2760-2776
    • Carrio, G.G.1    Cotton, W.R.2    Zupanski, D.3    Zupanski, M.4
  • 6
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using Monte-Carlo methods to forecast error statistics
    • 143-10 162
    • Evensen, G. 1994. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10 143-10 162.
    • (1994) J. Geophys. Res. , vol.99 , Issue.C5 , pp. 10
    • Evensen, G.1
  • 7
    • 33745223678 scopus 로고    scopus 로고
    • A data assimilation method for lognormally distributed observation errors
    • Fletcher, S. J. and Zupanski, M. 2006a. A data assimilation method for lognormally distributed observation errors. Q. J. R. Meteorol. Soc. 132, 2505-2520.
    • (2006) Q. J. R. Meteorol. Soc. , vol.132 , pp. 2505-2520
    • Fletcher, S.J.1    Zupanski, M.2
  • 8
    • 33745205082 scopus 로고    scopus 로고
    • A hybrid multivariate normal and lognormal distribution for data assimilation
    • Fletcher, S. J. and Zupanski, M. 2006b. A hybrid multivariate normal and lognormal distribution for data assimilation. Atmos. Sci. Let. 7, 43-46.
    • (2006) Atmos. Sci. Let. , vol.7 , pp. 43-46
    • Fletcher, S.J.1    Zupanski, M.2
  • 9
    • 39749162940 scopus 로고    scopus 로고
    • Implications and impacts of transforming lognormal variables into normal variables in VAR
    • Fletcher, S. J. and Zupanski, M. 2008. Implications and impacts of transforming lognormal variables into normal variables in VAR. Met. Zeit. 16, 755-765.
    • (2008) Met. Zeit. , vol.16 , pp. 755-765
    • Fletcher, S.J.1    Zupanski, M.2
  • 10
    • 0001198970 scopus 로고    scopus 로고
    • Advances in sequential estimation for atmospheric and oceanic flows
    • Ghil, M. 1997. Advances in sequential estimation for atmospheric and oceanic flows. J. Meteorol. Soc. Jpn. 75, 289-304.
    • (1997) J. Meteorol. Soc. Jpn. , vol.75 , pp. 289-304
    • Ghil, M.1
  • 12
    • 0035391382 scopus 로고    scopus 로고
    • Variance reduced ensemble Kalman filtering
    • Heemink, A. W., Verlaan, M. and Segers, J. 2001. Variance reduced ensemble Kalman filtering. Mon. Wea. Rev. 129, 1718-1728.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 1718-1728
    • Heemink, A.W.1    Verlaan, M.2    Segers, J.3
  • 13
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L. and Mitchell, H. L. 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev. 126, 796-811.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 14
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. 1960. A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng. 82, 35-45.
    • (1960) Trans. ASME, J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.1
  • 16
    • 0001640825 scopus 로고
    • Chaotic behavior of multidimensional difference equations
    • (eds H.-O. Peitgen and H.-O.Walter). Lecture Notes in Mathematics. Springer, Berlin
    • Kaplan, J. L. and Yorke, J. A. 1979. Chaotic behavior of multidimensional difference equations. In: Functional Differential Equations and Approximations of Fixed Points (eds H.-O. Peitgen and H.-O.Walter). Lecture Notes in Mathematics, Vol. 730. Springer, Berlin, p. 204.
    • (1979) Functional Differential Equations and Approximations of Fixed Points , vol.730 , pp. 204
    • Kaplan, J.L.1    Yorke, J.A.2
  • 17
    • 4444303259 scopus 로고    scopus 로고
    • Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth
    • Lawson, W. G. and Hansen, J. A. 2004. Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev. 132, 1966-1981.
    • (2004) Mon. Wea. Rev. , vol.132 , pp. 1966-1981
    • Lawson, W.G.1    Hansen, J.A.2
  • 18
    • 84975888044 scopus 로고
    • Analysis methods for numerical weather prediction
    • Lorenc, A. C. 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112, 1177-1194.
    • (1986) Q. J. R. Meteorol. Soc. , vol.112 , pp. 1177-1194
    • Lorenc, A.C.1
  • 19
    • 0001846226 scopus 로고
    • Predictability: a problem partly solved
    • Reading, UK, ECMWF
    • Lorenz, E. N. 1995. 'Predictability: a problem partly solved'. Proc. Seminar on Predictability, Vol. 1, Reading, UK, ECMWF, 1-18.
    • (1995) Proc. Seminar on Predictability , vol.1 , pp. 1-18
    • Lorenz, E.N.1
  • 20
    • 0141460773 scopus 로고    scopus 로고
    • Dynamics of model error: some generic features
    • Nicolis, C. 2003. Dynamics of model error: some generic features. J. Atmos. Sci. 60, 2208-2218.
    • (2003) J. Atmos. Sci. , vol.60 , pp. 2208-2218
    • Nicolis, C.1
  • 21
    • 69849105686 scopus 로고    scopus 로고
    • Dynamics of prediction errors under the combined effect of initial condition and model errors
    • Nicolis,C., Perdigao,R. andVannitsem, S. 2009. Dynamics of prediction errors under the combined effect of initial condition and model errors. J. Atmos. Sci. 66, 766-778.
    • (2009) J. Atmos. Sci. , vol.66 , pp. 766-778
    • Nicolis, C.1    Perdigao, R.2    Vannitsem, S.3
  • 22
    • 0003582543 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge
    • Ott, E. 2002. Chaos in Dynamical Systems, Cambridge University Press, Cambridge.
    • (2002) Chaos in Dynamical Systems
    • Ott, E.1
  • 23
    • 3843055922 scopus 로고    scopus 로고
    • A Local Ensemble Kalman Filter for atmospheric data assimilation in oceanography
    • Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J. and co-authors. 2004. A Local Ensemble Kalman Filter for atmospheric data assimilation in oceanography. Tellus 56A, 273-277.
    • (2004) Tellus , vol.56 A , pp. 273-277
    • Ott, E.1    Hunt, B.R.2    Szunyogh, I.3    Zimin, A.V.4    Kostelich, E.J.5
  • 24
    • 0031742114 scopus 로고    scopus 로고
    • A singular evolutive extended Kalman filter for data assimilation in oceanography
    • Pham, D. T., Verron, J. and Roubaud, M. C. 1998. A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Marine Sys. 16, 323-340.
    • (1998) J. Marine Sys. , vol.16 , pp. 323-340
    • Pham, D.T.1    Verron, J.2    Roubaud, M.C.3
  • 25
    • 0036960475 scopus 로고    scopus 로고
    • Extended versus ensemble Kalman filtering to land data assimilation
    • Reichle, R. H., Walker, J. P., Koster, R. D. and Houser, P. R. 2002. Extended versus ensemble Kalman filtering to land data assimilation. J. Hydrometeor 3, 728-740.
    • (2002) J. Hydrometeor , vol.3 , pp. 728-740
    • Reichle, R.H.1    Walker, J.P.2    Koster, R.D.3    Houser, P.R.4
  • 26
    • 34548487280 scopus 로고    scopus 로고
    • A reduced-order Kalman filter for data assimilation in physical oceanography
    • Rozier, D., Birol, F., Cosme, E., Brasseur, P., Brankart, J. M. and co-authors. 2007. A reduced-order Kalman filter for data assimilation in physical oceanography. SIAM Rev. 49, 449-465.
    • (2007) SIAM Rev. , vol.49 , pp. 449-465
    • Rozier, D.1    Birol, F.2    Cosme, E.3    Brasseur, P.4    Brankart, J.M.5
  • 27
    • 39049173291 scopus 로고    scopus 로고
    • Implications of the Form of the ensemble transformation in the ensemble square root filters
    • Sakov, P. and Oke, P. R. 2008. Implications of the Form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev. 136, 1042-1053.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 1042-1053
    • Sakov, P.1    Oke, P.R.2
  • 29
    • 0442281321 scopus 로고    scopus 로고
    • Assimilation of Standard and targeted observations within the unstable subspace of the observation-analysis-forecast cycle system
    • Trevisan, A. and Uboldi, F. 2004. Assimilation of Standard and targeted observations within the unstable subspace of the observation-analysis-forecast cycle system. J. Atmos. Sci. 61, 103-113.
    • (2004) J. Atmos. Sci. , vol.61 , pp. 103-113
    • Trevisan, A.1    Uboldi, F.2
  • 31
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S. and Hamill, T. M. 2002. Ensemble data assimilation without perturbed observations. Mon. Wea. Rev. 130, 1913-1924.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 32
    • 24944523803 scopus 로고    scopus 로고
    • Maximum likelihood ensemble filter: theoretical aspects
    • Zupanski, M. 2005. Maximum likelihood ensemble filter: theoretical aspects. Mon. Wea. Rev. 133, 1710-1726.
    • (2005) Mon. Wea. Rev. , vol.133 , pp. 1710-1726
    • Zupanski, M.1
  • 33
    • 77249103542 scopus 로고    scopus 로고
    • Informationmeasures in ensemble data assimilation. Chapter in the book
    • (eds S. K. Park and L. Xu), Springer-Verlag, Berlin-Heidelberg, 475pp
    • Zupanski, D., 2009. Informationmeasures in ensemble data assimilation. Chapter in the book. In: Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications (eds S. K. Park and L. Xu), Springer-Verlag, Berlin-Heidelberg. pp. 85-95, 475pp.
    • (2009) Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications , pp. 85-95
    • Zupanski, D.1
  • 34
    • 33644881232 scopus 로고    scopus 로고
    • Model error estimation employing an ensemble data assimilation approach
    • Zupanski, D. and Zupanski,M. 2006. Model error estimation employing an ensemble data assimilation approach. Mon. Wea. Rev. 134, 1337-1354.
    • (2006) Mon. Wea. Rev. , vol.134 , pp. 1337-1354
    • Zupanski, D.1    Zupanski, M.2
  • 37
    • 35748949885 scopus 로고    scopus 로고
    • Carbon flux bias estimation employing Maximum Likelihood Ensemble Filter (MLEF)
    • Zupanski, D., Denning, A. S., Uliasz, M., Zupanski, M., Schuh, A. E. and co-authors. 2007b. Carbon flux bias estimation employing Maximum Likelihood Ensemble Filter (MLEF). J. Geophys. Res. 112, D17107.
    • (2007) J. Geophys. Res. , vol.112
    • Zupanski, D.1    Denning, A.S.2    Uliasz, M.3    Zupanski, M.4    Schuh, A.E.5
  • 38
    • 48649088191 scopus 로고    scopus 로고
    • The Maximum Likelihood Ensemble Filter as a non-differentiable minimization algorithm
    • Zupanski, M., Navon, I. M. and Zupanski, D. 2008. The Maximum Likelihood Ensemble Filter as a non-differentiable minimization algorithm. Quart. J. Roy. Meteorol. Soc. 134, 1039-1050.
    • (2008) Quart. J. Roy. Meteorol. Soc. , vol.134 , pp. 1039-1050
    • Zupanski, M.1    Navon, I.M.2    Zupanski, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.