메뉴 건너뛰기




Volumn 133, Issue 627, 2007, Pages 1533-1545

Applications of information theory in ensemble data assimilation

Author keywords

3D Var; Ensemble data assimilation; Information theory; Kalman filter; Maximum Likelihood Ensemble Filter

Indexed keywords

DATA PROCESSING; KALMAN FILTERS; MAXIMUM LIKELIHOOD ESTIMATION; WEATHER FORECASTING;

EID: 35549011350     PISSN: 00359009     EISSN: None     Source Type: Journal    
DOI: 10.1002/qj.123     Document Type: Article
Times cited : (34)

References (62)
  • 1
    • 16244415816 scopus 로고    scopus 로고
    • Quantifying uncertainty for non-Gaussian ensembles in complex systems
    • Abramov RV, Majda AJ. 2004. Quantifying uncertainty for non-Gaussian ensembles in complex systems. SIAM J. Sci. Comput. 26: 411-447.
    • (2004) SIAM J. Sci. Comput , vol.26 , pp. 411-447
    • Abramov, R.V.1    Majda, A.J.2
  • 2
    • 13244267227 scopus 로고    scopus 로고
    • Information theory and predictability for low-frequency variability
    • Abramov R, Majda A, Kleeman R. 2005. Information theory and predictability for low-frequency variability. J. Atmos. Sci. 62: 65-87.
    • (2005) J. Atmos. Sci , vol.62 , pp. 65-87
    • Abramov, R.1    Majda, A.2    Kleeman, R.3
  • 3
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson JL. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129: 2884-2903.
    • (2001) Mon. Weather Rev , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 4
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects
    • Bishop CH, Etherton BJ, Majumdar SJ. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129: 420-436.
    • (2001) Mon. Weather Rev , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.J.2    Majumdar, S.J.3
  • 5
    • 0001482955 scopus 로고    scopus 로고
    • An introduction to estimation theory
    • Cohn SE. 1997. An introduction to estimation theory. J. Meteorol. Soc. Jpn 75: 257-288.
    • (1997) J. Meteorol. Soc. Jpn , vol.75 , pp. 257-288
    • Cohn, S.E.1
  • 6
    • 0000991256 scopus 로고
    • On-line estimation of error covariance parameters for atmospheric data assimilation
    • Dee DP. 1995. On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Weather Rev. 123: 1128-1145.
    • (1995) Mon. Weather Rev , vol.123 , pp. 1128-1145
    • Dee, D.P.1
  • 7
    • 8744221249 scopus 로고    scopus 로고
    • Predictability and information theory. Part I: Measures of predictability
    • DelSole T. 2004. Predictability and information theory. Part I: Measures of predictability. J. Atmos. Sci. 61: 2425-2440.
    • (2004) J. Atmos. Sci , vol.61 , pp. 2425-2440
    • DelSole, T.1
  • 9
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5): 10143-10162.
    • (1994) J. Geophys. Res , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 10
    • 2442550220 scopus 로고    scopus 로고
    • Estimation of entropy reduction and degrees of freedom for signal for large variational analysis systems
    • Memo, 18 pp
    • Fisher M. 2003. 'Estimation of entropy reduction and degrees of freedom for signal for large variational analysis systems'. ECMWF Tech. Memo. No. 397. 18 pp.
    • (2003) ECMWF Tech , Issue.397
    • Fisher, M.1
  • 11
    • 33745223678 scopus 로고    scopus 로고
    • A data assimilation method for log-normally distributed observational errors
    • Fletcher SJ, Zupanski M. 2006. A data assimilation method for log-normally distributed observational errors. Q. J. R. Meteorol. Soc. 132: 2505-2520.
    • (2006) Q. J. R. Meteorol. Soc , vol.132 , pp. 2505-2520
    • Fletcher, S.J.1    Zupanski, M.2
  • 12
    • 0033023511 scopus 로고    scopus 로고
    • Construction of correlation functions in two and three dimensions
    • Gaspari G, Cohn SE. 1999. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125: 723-757.
    • (1999) Q. J. R. Meteorol. Soc , vol.125 , pp. 723-757
    • Gaspari, G.1    Cohn, S.E.2
  • 14
    • 0033792589 scopus 로고    scopus 로고
    • A hybrid ensemble Kalman filter-3D variational analysis scheme
    • Hamill TM, Snyder C. 2000. A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev. 128: 2905-2919.
    • (2000) Mon. Weather Rev , vol.128 , pp. 2905-2919
    • Hamill, T.M.1    Snyder, C.2
  • 15
    • 0035506430 scopus 로고    scopus 로고
    • Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
    • Hamill TM, Whitaker JS, Snyder C. 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129: 2776-2790.
    • (2001) Mon. Weather Rev , vol.129 , pp. 2776-2790
    • Hamill, T.M.1    Whitaker, J.S.2    Snyder, C.3
  • 18
    • 0037099502 scopus 로고    scopus 로고
    • A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific
    • Hoteit I, Pham D-T, Blum J. 2002. A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J. Mar. Syst. 36: 101-127.
    • (2002) J. Mar. Syst , vol.36 , pp. 101-127
    • Hoteit, I.1    Pham, D.-T.2    Blum, J.3
  • 19
    • 0344497391 scopus 로고    scopus 로고
    • A semi-evolutive filter with partially local correction basis for data assimilation in oceanography
    • Hoteit I, Pham D-T, Blum J. 2003. A semi-evolutive filter with partially local correction basis for data assimilation in oceanography. Oceanol. Acta 26: 511-524.
    • (2003) Oceanol. Acta , vol.26 , pp. 511-524
    • Hoteit, I.1    Pham, D.-T.2    Blum, J.3
  • 20
    • 0034351743 scopus 로고    scopus 로고
    • Improving assimilated global datasets using TMI rainfall and columnar moisture observations
    • Hou AY, Zhang SQ, da Silva AM, Olson WS. 2000. Improving assimilated global datasets using TMI rainfall and columnar moisture observations. J. Climate 13: 4180-4195.
    • (2000) J. Climate , vol.13 , pp. 4180-4195
    • Hou, A.Y.1    Zhang, S.Q.2    da Silva, A.M.3    Olson, W.S.4
  • 21
    • 0001733514 scopus 로고    scopus 로고
    • Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors
    • Hou AY, Zhang SQ, da Silva AM, Olson WS, Kummerow CD, Simpson J. 2001. Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Am. Meteorol. Soc. 82: 659-679.
    • (2001) Bull. Am. Meteorol. Soc , vol.82 , pp. 659-679
    • Hou, A.Y.1    Zhang, S.Q.2    da Silva, A.M.3    Olson, W.S.4    Kummerow, C.D.5    Simpson, J.6
  • 22
    • 4444309838 scopus 로고    scopus 로고
    • Variational continuous assimilation of TMI and SSM/I rain rates: Impact on GEOS-3 hurricane analyses and forecasts
    • Hou AY, Zhang SQ, Reale O. 2004. Variational continuous assimilation of TMI and SSM/I rain rates: Impact on GEOS-3 hurricane analyses and forecasts. Mon. Weather Rev. 132: 2094-2109.
    • (2004) Mon. Weather Rev , vol.132 , pp. 2094-2109
    • Hou, A.Y.1    Zhang, S.Q.2    Reale, O.3
  • 23
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer PL, Mitchell HL. 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126: 796-811.
    • (1998) Mon. Weather Rev , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 24
    • 3242882987 scopus 로고    scopus 로고
    • Ph.D. thesis, Department of Meteorology, University of Reading, 218 pp. Available from University of Reading, Whiteknights, PO Box, Reading, UK
    • Johnson C. 2003. 'Information content of observations in variational data assimilation'. Ph.D. thesis, Department of Meteorology, University of Reading, 218 pp. Available from University of Reading, Whiteknights, PO Box 220, Reading, RG6 2AX, UK.
    • (2003) Information content of observations in variational data assimilation
    • Johnson, C.1
  • 25
    • 0033912092 scopus 로고    scopus 로고
    • Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter
    • Keppenne CL. 2000. Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Weather Rev. 128: 1971-1981.
    • (2000) Mon. Weather Rev , vol.128 , pp. 1971-1981
    • Keppenne, C.L.1
  • 26
    • 0036646756 scopus 로고    scopus 로고
    • Measuring dynamical prediction utility using relative entropy
    • Kleeman R. 2002. Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci. 59: 2057-2072.
    • (2002) J. Atmos. Sci , vol.59 , pp. 2057-2072
    • Kleeman, R.1
  • 27
    • 33646562854 scopus 로고    scopus 로고
    • Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part I: Liquid clouds
    • L'Ecuyer TS, Gabriel P, Leesman K, Cooper SJ, Stephens GL. 2006. Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part I: Liquid clouds. J. Appl. Meteorol. Clim. 45: 20-41.
    • (2006) J. Appl. Meteorol. Clim , vol.45 , pp. 20-41
    • L'Ecuyer, T.S.1    Gabriel, P.2    Leesman, K.3    Cooper, S.J.4    Stephens, G.L.5
  • 28
    • 0032730919 scopus 로고    scopus 로고
    • Data assimilation via error subspace statistical estimation. Part I: Theory and schemes
    • Lermusiaux PFJ, Robinson AR. 1999. Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Weather Rev. 127: 1385-1407.
    • (1999) Mon. Weather Rev , vol.127 , pp. 1385-1407
    • Lermusiaux, P.F.J.1    Robinson, A.R.2
  • 30
    • 8744297806 scopus 로고    scopus 로고
    • A mathematical framework for quantifying predictability through relative entropy
    • Majda AJ, Kleeman R, Cai D. 2002. A mathematical framework for quantifying predictability through relative entropy. Methods Appl. Anal. 9: 425-444.
    • (2002) Methods Appl. Anal , vol.9 , pp. 425-444
    • Majda, A.J.1    Kleeman, R.2    Cai, D.3
  • 31
    • 0034252486 scopus 로고    scopus 로고
    • Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part I: Formulation
    • Ménard R, Cohn SE, Chang L-P, Lyster PM. 2000. Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part I: Formulation. Mon. Weather Rev. 128: 2654-2671.
    • (2000) Mon. Weather Rev , vol.128 , pp. 2654-2671
    • Ménard, R.1    Cohn, S.E.2    Chang, L.-P.3    Lyster, P.M.4
  • 33
    • 0036853557 scopus 로고    scopus 로고
    • Ensemble size, balance, and model-error representation in an ensemble Kalman filter
    • Mitchell HL, Houtekamer PL, Pellerin G. 2002. Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Weather Rev. 130: 2791-2808.
    • (2002) Mon. Weather Rev , vol.130 , pp. 2791-2808
    • Mitchell, H.L.1    Houtekamer, P.L.2    Pellerin, G.3
  • 34
    • 0027073664 scopus 로고
    • Variational data assimilation with an adiabatic version of the NMC spectral model
    • Navon IM, Zou X, Derber J, Sela J. 1992. Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Weather Rev. 120: 1433-1446.
    • (1992) Mon. Weather Rev , vol.120 , pp. 1433-1446
    • Navon, I.M.1    Zou, X.2    Derber, J.3    Sela, J.4
  • 35
    • 14944338900 scopus 로고    scopus 로고
    • Mechanisms for the development of locally low-dimensional atmospheric dynamics
    • Oczkowski M, Szunyogh I, Patil DJ. 2005. Mechanisms for the development of locally low-dimensional atmospheric dynamics. J. Atmos. Sci. 62: 1135-1156.
    • (2005) J. Atmos. Sci , vol.62 , pp. 1135-1156
    • Oczkowski, M.1    Szunyogh, I.2    Patil, D.J.3
  • 39
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly nonlinear systems
    • Pham DT. 2001. Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Weather Rev. 129: 1194-1207.
    • (2001) Mon. Weather Rev , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 40
    • 0031742114 scopus 로고    scopus 로고
    • A singular evolutive extended Kalman filter for data assimilation in oceanography
    • Pham DT, Verron J, Roubaud MC. 1998. A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16: 323-340.
    • (1998) J. Mar. Syst , vol.16 , pp. 323-340
    • Pham, D.T.1    Verron, J.2    Roubaud, M.C.3
  • 41
    • 0027865128 scopus 로고
    • Estimating effective data density in a satellite retrieval or an objective analysis
    • Purser RJ, Huang H-L. 1993. Estimating effective data density in a satellite retrieval or an objective analysis. J. Appl. Meteorol. 32: 1092-1107.
    • (1993) J. Appl. Meteorol , vol.32 , pp. 1092-1107
    • Purser, R.J.1    Huang, H.-L.2
  • 42
    • 0036540999 scopus 로고    scopus 로고
    • Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances
    • Rabier F, Fourrie N, Djalil C, Prunet P. 2002. Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances. Q. J. R. Meteorol. Soc. 128: 1011-1027.
    • (2002) Q. J. R. Meteorol. Soc , vol.128 , pp. 1011-1027
    • Rabier, F.1    Fourrie, N.2    Djalil, C.3    Prunet, P.4
  • 43
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle RH, McLaughlin DB, Entekhabi D. 2002a. Hydrologic data assimilation with the ensemble Kalman filter. Mon. Weather Rev. 130: 103-114.
    • (2002) Mon. Weather Rev , vol.130 , pp. 103-114
    • Reichle, R.H.1    McLaughlin, D.B.2    Entekhabi, D.3
  • 46
    • 0036612028 scopus 로고    scopus 로고
    • Evaluating probabilistic forecasts using information theory
    • Roulston MS, Smith LA. 2002. Evaluating probabilistic forecasts using information theory. Mon. Weather Rev. 130: 1653-1660.
    • (2002) Mon. Weather Rev , vol.130 , pp. 1653-1660
    • Roulston, M.S.1    Smith, L.A.2
  • 47
    • 0033208415 scopus 로고    scopus 로고
    • A conceptual framework for predictability studies
    • Schneider T, Griffies SM. 1999. A conceptual framework for predictability studies. J. Climate. 12: 3133-3155.
    • (1999) J. Climate , vol.12 , pp. 3133-3155
    • Schneider, T.1    Griffies, S.M.2
  • 49
    • 27744434698 scopus 로고    scopus 로고
    • Assessing a local ensemble Kalman filter: Perfect model experiments with the National Centers for Environmental Prediction global model
    • Szunyogh I, Kostelich EJ, Gyarmati G, Patil DJ, Hunt BR, Kalnay E, Ott E, Yorke JA. 2005. Assessing a local ensemble Kalman filter: Perfect model experiments with the National Centers for Environmental Prediction global model. Tellus 57A: 528-545.
    • (2005) Tellus , vol.57 A , pp. 528-545
    • Szunyogh, I.1    Kostelich, E.J.2    Gyarmati, G.3    Patil, D.J.4    Hunt, B.R.5    Kalnay, E.6    Ott, E.7    Yorke, J.A.8
  • 52
    • 0035302727 scopus 로고    scopus 로고
    • An ensemble smoother with error estimates
    • van Leeuwen PJ. 2001. An ensemble smoother with error estimates. Mon. Weather Rev. 129: 709-728.
    • (2001) Mon. Weather Rev , vol.129 , pp. 709-728
    • van Leeuwen, P.J.1
  • 53
    • 0000460804 scopus 로고
    • Design criteria and eigensequence plots for satellite-computed tomography
    • Wahba G. 1985. Design criteria and eigensequence plots for satellite-computed tomography. J. Atmos. Oceanic Technol. 2: 125-132.
    • (1985) J. Atmos. Oceanic Technol , vol.2 , pp. 125-132
    • Wahba, G.1
  • 54
    • 0001759261 scopus 로고
    • Adaptive tuning of numerical weather prediction models: Randomized GCV in three-and four-dimensional data assimilation
    • Wahba G, Johnson DR, Gao F, Gong J. 1995. Adaptive tuning of numerical weather prediction models: Randomized GCV in three-and four-dimensional data assimilation. Mon. Weather Rev. 123: 3358-3370.
    • (1995) Mon. Weather Rev , vol.123 , pp. 3358-3370
    • Wahba, G.1    Johnson, D.R.2    Gao, F.3    Gong, J.4
  • 55
    • 0037980372 scopus 로고    scopus 로고
    • A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes
    • Wang X, Bishop CH. 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 60: 1140-1158.
    • (2003) J. Atmos. Sci , vol.60 , pp. 1140-1158
    • Wang, X.1    Bishop, C.H.2
  • 56
    • 33645982241 scopus 로고    scopus 로고
    • Ensemble Transform Kalman Filter-based ensemble perturbations in an operational global prediction system at NCEP
    • Wei M, Toth Z, Wobus R, Zhu Y, Bishop CH, Wang X. 2006. Ensemble Transform Kalman Filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus 58A: 28-44.
    • (2006) Tellus , vol.58 A , pp. 28-44
    • Wei, M.1    Toth, Z.2    Wobus, R.3    Zhu, Y.4    Bishop, C.H.5    Wang, X.6
  • 57
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker JS, Hamill TM. 2002. Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130: 1913-1924.
    • (2002) Mon. Weather Rev , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 58
    • 2442717392 scopus 로고    scopus 로고
    • Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter
    • Zhang F, Snyder C, Sun J. 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev. 132: 1238-1253.
    • (2004) Mon. Weather Rev , vol.132 , pp. 1238-1253
    • Zhang, F.1    Snyder, C.2    Sun, J.3
  • 59
    • 33644881232 scopus 로고    scopus 로고
    • Model error estimation employing an ensemble data assimilation approach
    • Zupanski D, Zupanski M. 2006. Model error estimation employing an ensemble data assimilation approach. Mon. Weather Rev. 134: 1337-1354.
    • (2006) Mon. Weather Rev , vol.134 , pp. 1337-1354
    • Zupanski, D.1    Zupanski, M.2
  • 61
    • 24944523803 scopus 로고    scopus 로고
    • Maximum likelihood ensemble filter: Theoretical aspects
    • Zupanski M. 2005. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev. 133: 1710-1726.
    • (2005) Mon. Weather Rev , vol.133 , pp. 1710-1726
    • Zupanski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.