메뉴 건너뛰기




Volumn 136, Issue 646, 2010, Pages 77-90

Reliability diagrams for non-parametric density forecasts of continuous variables: Accounting for serial correlation

Author keywords

Calibration; Consistency resampling; Probabilistic forecasting; Surrogate; Verification; Wind power

Indexed keywords

COMBINED EFFECT; CONTINUOUS VARIABLES; COUNTING STATISTICS; DENSITY FORECAST; DIAGNOSTIC TOOLS; NON-PARAMETRIC; PROBABILISTIC FORECASTING; PROBABILISTIC FORECASTS; RELIABILITY ASSESSMENTS; RELIABILITY EVALUATION; RESAMPLING; RESAMPLING METHOD; SAMPLING EFFECTS; SERIAL CORRELATION; SURROGATE; SYSTEMATIC BIAS;

EID: 77249106476     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.559     Document Type: Article
Times cited : (76)

References (48)
  • 2
    • 0342323771 scopus 로고
    • Generationofover-dispersedandunder-dispersed Binomial variates
    • AhnH,ChenJJ
    • AhnH,ChenJJ.1995.Generationofover-dispersedandunder-dispersed Binomial variates. J. Comput. Graph. Stat. 4: 55-64.
    • (1995) J. Comput. Graph. Stat , vol.4 , pp. 55-64
  • 3
    • 0033368923 scopus 로고    scopus 로고
    • The skill of ensemble prediction systems
    • Atger F. 1998. The skill of ensemble prediction systems. Mon. Weather Rev. 127: 1941-1953.
    • (1998) Mon. Weather Rev , vol.127 , pp. 1941-1953
    • Atger, F.1
  • 4
    • 1642284383 scopus 로고    scopus 로고
    • Estimation of the reliability of ensemble probabilistic forecasts
    • Atger F. 2004. Estimation of the reliability of ensemble probabilistic forecasts. Q. J. R. Meteorol. Soc. 130: 1509-1523.
    • (2004) Q. J. R. Meteorol. Soc , vol.130 , pp. 1509-1523
    • Atger, F.1
  • 5
    • 0035636851 scopus 로고    scopus 로고
    • Testing density forecasts, with applications to risk management
    • Berkowitz J. 2001. Testing density forecasts, with applications to risk management. J. Business Econ. Statistics 19: 465-474.
    • (2001) J. Business Econ. Statistics , vol.19 , pp. 465-474
    • Berkowitz, J.1
  • 6
    • 33244491943 scopus 로고    scopus 로고
    • A comparison of a few statistical models for making quantile wind power forecasts
    • Bremnes JB. 2006. A comparison of a few statistical models for making quantile wind power forecasts. Wind Energy 9: 3-11.
    • (2006) Wind Energy , vol.9 , pp. 3-11
    • Bremnes, J.B.1
  • 7
    • 49149083729 scopus 로고    scopus 로고
    • On reliability analysis of multi-categorical forecasts
    • Bröcker J. 2009. On reliability analysis of multi-categorical forecasts. Nonlinear Processes in Geophys. 15: 661-673.
    • (2009) Nonlinear Processes In Geophys , vol.15 , pp. 661-673
    • Bröcker, J.1
  • 8
    • 34447633042 scopus 로고    scopus 로고
    • Increasing the reliability of reliability diagrams
    • Bröcker J, Smith LA. 2007a. Increasing the reliability of reliability diagrams. Weather and Forecasting 22: 651-661.
    • (2007) Weather and Forecasting , vol.22 , pp. 651-661
    • Bröcker, J.1    Smith, L.A.2
  • 9
    • 34249087709 scopus 로고    scopus 로고
    • Scoring probabilistic forecasts: The importance of being proper
    • Bröcker J, Smith LA. 2007b. Scoring probabilistic forecasts: The importance of being proper. Weather and Forecasting 22: 382-388.
    • (2007) Weather and Forecasting , vol.22 , pp. 382-388
    • Bröcker, J.1    Smith, L.A.2
  • 10
    • 0042745956 scopus 로고    scopus 로고
    • Evaluating interval forecasts
    • Christoffersen PF. 1998. Evaluating interval forecasts. Int. Econ. Rev. 39: 841-862.
    • (1998) Int. Econ. Rev , vol.39 , pp. 841-862
    • Christoffersen, P.F.1
  • 13
    • 0042475416 scopus 로고    scopus 로고
    • A note on the correlation structure of transformed Gaussian random fields
    • De Oliveira V. 2003. A note on the correlation structure of transformed Gaussian random fields. Aust. N. Z. J. Stat. 45: 353-366.
    • (2003) Aust. N. Z. J. Stat , vol.45 , pp. 353-366
    • de Oliveira, V.1
  • 14
    • 0347623647 scopus 로고    scopus 로고
    • Evaluating density forecasts with applications to financial risk management
    • Diebold FX, Gunther TA, Tay AS. 1998. Evaluating density forecasts with applications to financial risk management. Int. Econ. Rev. 39: 863-883.
    • (1998) Int. Econ. Rev , vol.39 , pp. 863-883
    • Diebold, F.X.1    Gunther, T.A.2    Tay, A.S.3
  • 16
    • 40549093626 scopus 로고    scopus 로고
    • Editorial: Probabilistic forecasting
    • Gneiting T. 2008a. Editorial: Probabilistic forecasting. J. R. Stat. Soc. A 171: 319-321.
    • (2008) J. R. Stat. Soc. A , vol.171 , pp. 319-321
    • Gneiting, T.1
  • 17
    • 77249124179 scopus 로고    scopus 로고
    • Technical Report No. 538. University of Washington, Department of Statistics: Seattle, USA
    • Gneiting T. 2008b. 'Quantiles as optimal point predictors'. Technical Report No. 538. University of Washington, Department of Statistics: Seattle, USA.
    • (2008) Quantiles As Optimal Point Predictors
    • Gneiting, T.1
  • 18
    • 33748872845 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting at the stateline wind energy center - The regime-switching space-time method
    • Gneiting T, Larson K, Westrick K, Genton MG, Aldrich E. 2006. Calibrated probabilistic forecasting at the stateline wind energy center - The regime-switching space-time method. J. Amer. Stat. Assoc. 101: 968-979.
    • (2006) J. Amer. Stat. Assoc , vol.101 , pp. 968-979
    • Gneiting, T.1    Larson, K.2    Westrick, K.3    Genton, M.G.4    Aldrich, E.5
  • 20
    • 0035540920 scopus 로고    scopus 로고
    • Improving coverage accuracy of nonparametric prediction intervals
    • Hall P, Rieck A. 2001. Improving coverage accuracy of nonparametric prediction intervals. J. R. Stat. Soc. B 63: 717-725.
    • (2001) J. R. Stat. Soc. B , vol.63 , pp. 717-725
    • Hall, P.1    Rieck, A.2
  • 21
    • 0035270069 scopus 로고    scopus 로고
    • Interpretationof rank histograms for verifyingensemble forecasts
    • Hamill T. 2001. Interpretationof rank histograms for verifyingensemble forecasts. Mon. Weather Rev. 129: 550-560.
    • (2001) Mon. Weather Rev , vol.129 , pp. 550-560
    • Hamill, T.1
  • 22
    • 34447637985 scopus 로고    scopus 로고
    • Uncertainty and inference for verification measures
    • Jolliffe IT. 2007. Uncertainty and inference for verification measures. Weather and Forecasting 22: 137-150.
    • (2007) Weather and Forecasting , vol.22 , pp. 137-150
    • Jolliffe, I.T.1
  • 23
    • 77249126175 scopus 로고    scopus 로고
    • Wiley: New York
    • Jolliffe IT, Stephenson DB. 2003. Forecast Verification: A Practitioner's Guide in Atmospheric Science. Wiley: New York.
    • (2003) Fo
    • Jolliffe, I.T.1    Stephenson, D.B.2
  • 24
    • 19144369129 scopus 로고    scopus 로고
    • On the uncertainty of wind power predictions - Analysis of the forecast accuracy and statistical distribution of errors
    • Lange M. 2005. On the uncertainty of wind power predictions - Analysis of the forecast accuracy and statistical distribution of errors. J. Sol. Energy - Trans. ASME 127: 177-184.
    • (2005) J. Sol. Energy - Trans. Asme , vol.127 , pp. 177-184
    • Lange, M.1
  • 25
    • 2442424734 scopus 로고    scopus 로고
    • Resampling Methods for Dependent Data
    • Springer: Berlin
    • Lahiri SN. 2003. Resampling Methods for Dependent Data, Springer Series in Statistics. Springer: Berlin.
    • (2003) Springer Series In Statistics
    • Lahiri, S.N.1
  • 30
    • 0027706813 scopus 로고
    • What is a good forecast? An essay on the nature of goodness in weather forecasting
    • Murphy AH. 1993. What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting 8: 281-293.
    • (1993) Weather and Forecasting , vol.8 , pp. 281-293
    • Murphy, A.H.1
  • 31
    • 37249050584 scopus 로고    scopus 로고
    • Prediction of wind power using time-varying coefficient functions
    • Barcelona, Spain. Elsevier: Amsterdam, The Netherlands
    • Nielsen TS, Madsen H, Nielsen HA. 2002. 'Prediction of wind power using time-varying coefficient functions'. In ProceedingsofIFAC 2002, 15th World Congress on Automatic Control, Barcelona, Spain. Elsevier: Amsterdam, The Netherlands.
    • (2002) Proceedingsofifac 2002, 15th World Congress On Automatic Control
    • Nielsen, T.S.1    Madsen, H.2    Ha, N.3
  • 33
    • 34548046411 scopus 로고    scopus 로고
    • PhD Thesis. Ecole des Mines de Paris: Paris, France. Available onlineat
    • Pinson P. 2006. 'Estimation of the uncertainty in wind power forecasting'. PhD Thesis. Ecole des Mines de Paris: Paris, France. Available onlineat http://pastel.paristech.org.
    • (2006) Estimation of The Uncertainty In Wind Power Forecasting
    • Pinson, P.1
  • 34
    • 63049105616 scopus 로고    scopus 로고
    • Ensemble-based probabilistic forecasting at Horns Rev
    • Pinson P, Madsen H. 2009a. Ensemble-based probabilistic forecasting at Horns Rev. Wind Energy 12: 137-155.
    • (2009) Wind Energy , vol.12 , pp. 137-155
    • Pinson, P.1    Madsen, H.2
  • 36
    • 34548047478 scopus 로고    scopus 로고
    • Trading wind generation with short-term probabilistic forecasts of wind power
    • Pinson P, Chevallier C, Kariniotakis G. 2007a. Trading wind generation with short-term probabilistic forecasts of wind power. IEEE Trans. Power Systems 22: 1148-1156.
    • (2007) Ieee Trans. Power Systems , vol.22 , pp. 1148-1156
    • Pinson, P.1    Chevallier, C.2    Kariniotakis, G.3
  • 37
    • 34548156412 scopus 로고    scopus 로고
    • Nonparametric probabilistic forecasts of wind power: Required properties and evaluation
    • Pinson P, Nielsen HAa, Møller JK, Madsen H, Kariniotakis G. 2007b. Nonparametric probabilistic forecasts of wind power: required properties and evaluation. Wind Energy 10: 497-516.
    • (2007) Wind Energy , vol.10 , pp. 497-516
    • Pinson, P.1    Haa, N.2    Møller, J.K.3    Madsen, H.4    Kariniotakis, G.5
  • 38
    • 0345792394 scopus 로고    scopus 로고
    • Surrogate time series
    • Schreiber T, Schmitz A. 2000. Surrogate time series. Physica D 142: 346-382.
    • (2000) Physica D , vol.142 , pp. 346-382
    • Schreiber, T.1    Schmitz, A.2
  • 40
    • 0001658414 scopus 로고    scopus 로고
    • Density forecasting: A survey
    • Tay AS, Wallis KF. 2000. Density forecasting: a survey. J. Forecasting 19: 235-254.
    • (2000) J. Forecasting , vol.19 , pp. 235-254
    • Tay, A.S.1    Wallis, K.F.2
  • 41
    • 0000588489 scopus 로고    scopus 로고
    • Evaluating volatility and interval forecasts
    • Taylor JW.1999.Evaluating volatility and interval forecasts. J. Forecasting 18: 111-128.
    • (1999) J. Forecasting , vol.18 , pp. 111-128
    • Taylor, J.W.1
  • 42
    • 31744438670 scopus 로고    scopus 로고
    • Density forecasting for weather derivative pricing
    • Taylor JW, Buizza R. 2006. Density forecasting for weather derivative pricing. Int. J. Forecasting 22: 29-42.
    • (2006) Int. J. Forecasting , vol.22 , pp. 29-42
    • Taylor, J.W.1    Buizza, R.2
  • 43
    • 44049111332 scopus 로고
    • Testing for nonlinearity in time-series: The method of surrogate data
    • Theiler J, Eubank S, Longtin A, Galdrikan B, Farmer JD. 1992. Testing for nonlinearity in time-series: the method of surrogate data. Physica D 58: 77-94.
    • (1992) Physica D , vol.58 , pp. 77-94
    • Theiler, J.1    Eubank, S.2    Longtin, A.3    Galdrikan, B.4    Farmer, J.D.5
  • 44
    • 0012956474 scopus 로고    scopus 로고
    • Density forecasting in economics and finance
    • Timmermann A. 2000. Density forecasting in economics and finance. J. Forecasting 19: 231-234.
    • (2000) J. Forecasting , vol.19 , pp. 231-234
    • Timmermann, A.1
  • 45
    • 0346102887 scopus 로고    scopus 로고
    • Estimation of false discovery rates in multiple testing: Application to microarray data
    • Tsai CA, Hsueh HM, Chen JJ. 2003. Estimation of false discovery rates in multiple testing: Application to microarray data. Biometrics 59: 1071-1081.
    • (2003) Biometrics , vol.59 , pp. 1071-1081
    • Tsai, C.A.1    Hsueh, H.M.2    Chen, J.J.3
  • 47
    • 77953507123 scopus 로고    scopus 로고
    • Resolving non-stationary spectral signals in wind speed time-series using the Hilbert-Huang transform
    • In press. DOI:10.1175/2009JAMC2058.1
    • Vincent CL, Giebel G, Pinson P, Madsen H. 2009. Resolving non-stationary spectral signals in wind speed time-series using the Hilbert-Huang transform. J. Appl. Meteorol. Clim. In press. DOI:10.1175/2009JAMC2058.1.
    • (2009) J. Appl. Meteorol. Clim
    • Vincent, C.L.1    Giebel, G.2    Pinson, P.3    Madsen, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.