-
1
-
-
0004725612
-
Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
-
A. Hillerborg, M. Modéer, and P. E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research 6, 773-782 (1976).
-
(1976)
Cement and Concrete Research
, vol.6
, pp. 773-782
-
-
Hillerborg, A.1
Modéer, M.2
Petersson, P.E.3
-
2
-
-
0028669676
-
Size effects on tensile fracture properties: A unified explanation based on disorder and fractality of concrete microstructure
-
A. Carpinteri and G. Ferro, Size effects on tensile fracture properties: A unified explanation based on disorder and fractality of concrete microstructure, Materials and Structures 28, 563-571 (1994).
-
(1994)
Materials and Structures
, vol.28
, pp. 563-571
-
-
Carpinteri, A.1
Ferro, G.2
-
3
-
-
0033333802
-
Effect of strain gradients on the size effect of concrete in uniaxial tension
-
J. G. M. Van Mier and M. R. A. Van Vliet, Effect of strain gradients on the size effect of concrete in uniaxial tension, Int. J. Fract. 94, 195-219 (1999).
-
(1999)
Int. J. Fract.
, vol.94
, pp. 195-219
-
-
Van Mier, J.G.M.1
Van Vliet, M.R.A.2
-
4
-
-
0032672354
-
Three-dimensional fractal analysis of concrete fracture at the meso-level
-
A. Carpinteri, B. Chiaia, and S. Invernizzi, Three-dimensional fractal analysis of concrete fracture at the meso-level, Theor. Appl. Fract. Mech. 31, 163-172 (1999).
-
(1999)
Theor. Appl. Fract. Mech.
, vol.31
, pp. 163-172
-
-
Carpinteri, A.1
Chiaia, B.2
Invernizzi, S.3
-
5
-
-
0028468278
-
Fractal nature of material microstructure and size effects on apparent mechanical properties
-
A. Carpinteri, Fractal nature of material microstructure and size effects on apparent mechanical properties, Mech. Mater. 18, 89-101 (1994).
-
(1994)
Mech. Mater.
, vol.18
, pp. 89-101
-
-
Carpinteri, A.1
-
6
-
-
0035930866
-
A scale-invariant cohesive crack model for quasi-brittle materials
-
A. Carpinteri, B. Chiaia, and P. Cornetti, A scale-invariant cohesive crack model for quasi-brittle materials, Eng. Fract. Mech. 69, 207-217 (2002).
-
(2002)
Eng. Fract. Mech.
, vol.69
, pp. 207-217
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
13
-
-
0030464353
-
Fractional relaxation-oscillation and fractional diffusion-wave phenomena
-
F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals 7, 1461-1477 (1996).
-
(1996)
Chaos Solitons Fractals
, vol.7
, pp. 1461-1477
-
-
Mainardi, F.1
-
14
-
-
0001553919
-
Fractional diffusion and wave equations
-
W. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 30, 134-144 (1989).
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.1
Wyss, W.2
-
15
-
-
0026260899
-
Fractional integral operators and fox functions in the theory of viscoelasticity
-
W. G. Glöckle and T. F. Nonnenmacher, Fractional integral operators and fox functions in the theory of viscoelasticity, Macromolecules 24, 6426-6434 (1991).
-
(1991)
Macromolecules
, vol.24
, pp. 6426-6434
-
-
Glöckle, W.G.1
Nonnenmacher, T.F.2
-
16
-
-
11544266356
-
Fox function representation of non-debye relaxation processes
-
W. G. Glöckle and T. F. Nonnenmacher, Fox function representation of non-debye relaxation processes, J. Stat. Phys. 71, 741-757 (1993).
-
(1993)
J. Stat. Phys.
, vol.71
, pp. 741-757
-
-
Glöckle, W.G.1
Nonnenmacher, T.F.2
-
17
-
-
0006972557
-
Function that have no first order derivative might have fractional derivatives of all orders less than one
-
E. Love, B. Ross, and S. Samko, Function that have no first order derivative might have fractional derivatives of all orders less than one, Real Analysis Exchange 20, 140-157 (1994).
-
(1994)
Real Analysis Exchange
, vol.20
, pp. 140-157
-
-
Love, E.1
Ross, B.2
Samko, S.3
-
18
-
-
0001219948
-
Fractional differentiation of devil's staircases
-
H. J. Schellnhuber and A. Seyler, Fractional differentiation of devil's staircases, Physica A 191, 491-500 (1992).
-
(1992)
Physica A
, vol.191
, pp. 491-500
-
-
Schellnhuber, H.J.1
Seyler, A.2
-
19
-
-
0003586464
-
-
Plenum Press, New York
-
J. Feder, Fractals (Plenum Press, New York, 1988).
-
(1988)
Fractals
-
-
Feder, J.1
-
20
-
-
36149036329
-
Fractional diffusion equation on fractals: One-dimensional case and asymptotic behavior
-
M. Giona and H. E. Roman, Fractional diffusion equation on fractals: One-dimensional case and asymptotic behavior, J. Phys. A 25, 2093-2105 (1992).
-
(1992)
J. Phys. A
, vol.25
, pp. 2093-2105
-
-
Giona, M.1
Roman, H.E.2
-
21
-
-
0001102649
-
Fractional integral and differential equations for a class of Lévy-type probability densities
-
T. F. Nonnenmacher, Fractional integral and differential equations for a class of Lévy-type probability densities, J. Phys. A 23, L697-L700 (1990).
-
(1990)
J. Phys. A
, vol.23
-
-
Nonnenmacher, T.F.1
-
22
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
K. M. Kolwankar and A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos 6, 505-523 (1996).
-
(1996)
Chaos
, vol.6
, pp. 505-523
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
23
-
-
0030671988
-
Holder exponents of irregular signals and local fractional derivatives
-
K. M. Kolwankar and A. D. Gangal, Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys. 48, 49-68 (1997).
-
(1997)
Pramana J. Phys.
, vol.48
, pp. 49-68
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
24
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
K. M. Kolwankar and A. D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett. 80, 214-217 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 214-217
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
25
-
-
0004376765
-
Local fractional calculus: A calculus for fractal space-time
-
Springer, Delft, The Netherlands
-
K. M. Kolwankar and A. D. Gangal, Local fractional calculus: A calculus for fractal space-time, in: Proceedings of Fractals: Theory and Applications in Engineering (Springer, Delft, The Netherlands, 1999), pp. 171-181.
-
(1999)
Proceedings of Fractals: Theory and Applications in Engineering
, pp. 171-181
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
26
-
-
0036028181
-
A fractional calculus approach to the description of stress and strain localization in fractal media
-
A. Carpinteri and P. Cornetti, A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fractals 13, 85-94 (2002).
-
(2002)
Chaos Solitons Fractals
, vol.13
, pp. 85-94
-
-
Carpinteri, A.1
Cornetti, P.2
-
27
-
-
0035834542
-
Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
-
A. Carpinteri, B. Chiaia, and P. Cornetti, Static-kinematic duality and the principle of virtual work in the mechanics of fractal media, Comput. Methods Appl. Mech. Eng. 191, 3-19 (2001).
-
(2001)
Comput. Methods Appl. Mech. Eng.
, vol.191
, pp. 3-19
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
|