메뉴 건너뛰기




Volumn 48, Issue 2, 2010, Pages 159-165

Artificial intelligence for diagnostic purposes: Principles, procedures and limitations

Author keywords

Artificial intelligence; Back propagation; Diagnostic methods; Haycock equation; Multilayer perceptron analysis; Neural networks; Regression analysis

Indexed keywords

ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BACK PROPAGATION; BODY HEIGHT; BODY SURFACE; BODY WEIGHT; DIAGNOSTIC ACCURACY; LINEAR REGRESSION ANALYSIS; PREDICTION; PRIORITY JOURNAL; SHORT SURVEY;

EID: 76649087003     PISSN: 14346621     EISSN: 14374331     Source Type: Journal    
DOI: 10.1515/CCLM.2010.045     Document Type: Short Survey
Times cited : (34)

References (40)
  • 1
    • 76649109127 scopus 로고    scopus 로고
    • WWW.SPSS.COM.
  • 3
    • 1842508084 scopus 로고    scopus 로고
    • Work of warren McCulloch
    • Andrew AM. Work of Warren McCulloch. Kybernetes 2004; 33:141-146
    • (2004) Kybernetes , vol.33 , pp. 141-146
    • Andrew, A.M.1
  • 5
    • 0010595696 scopus 로고
    • A framework for representing knowledge
    • Cambridge MA, USA: Technical Report Massachusetts Institute of Technology
    • Minsky M. A framework for representing knowledge. AIM- 306, Cambridge MA, USA: Technical Report Massachusetts Institute of Technology, 1974.
    • (1974) AIM- 306
    • Minsky, M.1
  • 6
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumbelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323:533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumbelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 9
    • 18744428453 scopus 로고    scopus 로고
    • Evaluation of PAPNET testing as an ancillary tool to clarify the status of the atypical cervical smear
    • Sherman ME, Schiffman MH, Mango LJ, Kelly D, Acosta D, Cason Z, et al. Evaluation of PAPNET testing as an ancillary tool to clarify the status of the atypical cervical smear. Mod Pathol 1997;10:564-567
    • (1997) Mod Pathol , vol.10 , pp. 564-567
    • Sherman, M.E.1    Schiffman, M.H.2    Mango, L.J.3    Kelly, D.4    Acosta, D.5    Cason, Z.6
  • 10
    • 0031951286 scopus 로고    scopus 로고
    • Neural networks assisted analysis and microscopic rescreening in presumed negative cervical cytologic smears
    • Mango LJ, Valente PT. Neural networks assisted analysis and microscopic rescreening in presumed negative cervical cytologic smears. Acta Cytol 1998;42:227-232
    • (1998) Acta Cytol , vol.42 , pp. 227-232
    • Mango, L.J.1    Valente, P.T.2
  • 12
    • 0033599724 scopus 로고    scopus 로고
    • Assessment of automated primary screening on PAPNET of cervical smears in the PRISMATIC trial
    • Prismatic Project Management Team
    • Prismatic Project Management Team. Assessment of automated primary screening on PAPNET of cervical smears in the PRISMATIC trial. Lancet 1999;353:1381-1385
    • (1999) Lancet , vol.353 , pp. 1381-1385
  • 13
    • 18244432236 scopus 로고    scopus 로고
    • Predicting the outcome of prostate biopsy in screen positive men by a multilayer perceptron network
    • Finne P, Finne R, Auvinen A, Juusela H, Aro J, Maattanen L, et al. Predicting the outcome of prostate biopsy in screen positive men by a multilayer perceptron network. Urology 2000; 56:418-422
    • (2000) Urology , vol.56 , pp. 418-422
    • Finne, P.1    Finne, R.2    Auvinen, A.3    Juusela, H.4    Aro, J.5    Maattanen, L.6
  • 14
    • 0033999380 scopus 로고    scopus 로고
    • Use of artificial neural networks in the clinical staging of prostate cancer
    • Gamito EJ, Stone NN, Batuello JT, Crawford ED. Use of artificial neural networks in the clinical staging of prostate cancer. Tech Urol 2000;6:60-63
    • (2000) Tech Urol , vol.6 , pp. 60-63
    • Gamito, E.J.1    Stone, N.N.2    Batuello, J.T.3    Crawford, E.D.4
  • 17
    • 0032411188 scopus 로고    scopus 로고
    • Hybrid artificial neural network segmentation and classification of dynamic contrast enhanced MR imaging of osteosarcoma
    • Glas JO, Reddick WE. Hybrid artificial neural network segmentation and classification of dynamic contrast enhanced MR imaging of osteosarcoma. Magn Reson Imaging 1998;16: 1075-1083
    • (1998) Magn Reson Imaging , vol.16 , pp. 1075-1083
    • Glas, J.O.1    Reddick, W.E.2
  • 18
    • 0032076928 scopus 로고    scopus 로고
    • Artificial neural networks of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck
    • Bryce TJ, Dewhirst MW, Floyd CE, Hars V, Brizel DM. Artificial neural networks of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1998;41:339-345
    • (1998) Int J Radiat Oncol Biol Phys , vol.41 , pp. 339-345
    • Bryce, T.J.1    Dewhirst, M.W.2    Floyd, C.E.3    Hars, V.4    Brizel, D.M.5
  • 23
    • 15244347342 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for prediction of mortality in head trauma based on clinical data
    • Eftekbar B, Mohammad K, Ardebilli HE, Ghodsi M, Ketabchi E. Comparison of artificial neural network and regression models for prediction of mortality in head trauma based on clinical data. BMC Med Inform Decis Making 2005;5:3-9.
    • (2005) BMC Med Inform Decis Making , vol.5 , pp. 3-9
    • Eftekbar, B.1    Mohammad, K.2    Ardebilli, H.E.3    Ghodsi, M.4    Ketabchi, E.5
  • 24
    • 0029383123 scopus 로고
    • A comparison of performance of mathematical predictive methods for medical diagnosis: Identifying acute cardiac ischemia among emergency department patients
    • Selker HP, Griffith JL, Patil S, Long WJ, D'Agostino RB. A comparison of performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. J Investig Med 1995; 43:468-476
    • (1995) J Investig Med , vol.43 , pp. 468-476
    • Selker, H.P.1    Griffith, J.L.2    Patil, S.3    Long, W.J.4    D'Agostino, R.B.5
  • 25
    • 0030061822 scopus 로고    scopus 로고
    • Prospective validation of artificial neural network trained to identify acute myocardial infarction
    • Baxt WG, Skora J. Prospective validation of artificial neural network trained to identify acute myocardial infarction. Lancet 1996;347:12-15
    • (1996) Lancet , vol.347 , pp. 12-15
    • Baxt, W.G.1    Skora, J.2
  • 26
    • 0031311808 scopus 로고    scopus 로고
    • Neural network of biochemical markers for early assessment of acute myocardial infarction
    • Ellenius J, Groth T, Lindahl B. Neural network of biochemical markers for early assessment of acute myocardial infarction. Stud Health Technol Inform 1997;43:382-385
    • (1997) Stud Health Technol Inform , vol.43 , pp. 382-385
    • Ellenius, J.1    Groth, T.2    Lindahl, B.3
  • 27
    • 0031239344 scopus 로고    scopus 로고
    • Identifying coronary stenosis using an image recognition neural network
    • Goodenday LS, Cios KJ, Shin L. Identifying coronary stenosis using an image recognition neural network. IEEE Eng Med Bio Mag 1997;16:139-144
    • (1997) IEEE Eng Med Bio Mag , vol.16 , pp. 139-144
    • Goodenday, L.S.1    Cios, K.J.2    Shin, L.3
  • 28
    • 0030828815 scopus 로고    scopus 로고
    • Using automated analysis of resting twelve lead ECG to identify patients at risk of developing transient myocardial iscaemia
    • Polak MJ, Zhou SH, Rautaharju PM, Armstrong WW, Chaitman BR. Using automated analysis of resting twelve lead ECG to identify patients at risk of developing transient myocardial iscaemia. Physiol Meas 1997;18:317-325
    • (1997) Physiol Meas , vol.18 , pp. 317-325
    • Polak, M.J.1    Zhou, S.H.2    Rautaharju, P.M.3    Armstrong, W.W.4    Chaitman, B.R.5
  • 29
    • 0033924437 scopus 로고    scopus 로고
    • Scandinavian test of artificial neural network for classification of myocardial perfusion images
    • Lindahl D, Toft J, Hesse B, Palmer J, Ali S, Lundin A, et al. Scandinavian test of artificial neural network for classification of myocardial perfusion images. Clin Physiol 2000;20:253-261
    • (2000) Clin Physiol , vol.20 , pp. 253-261
    • Lindahl, D.1    Toft, J.2    Hesse, B.3    Palmer, J.4    Ali, S.5    Lundin, A.6
  • 30
    • 76649121720 scopus 로고    scopus 로고
    • Neural network analysis speeds disease risk predictions, innovative clinical models transform cardiovascular assessment algorithms
    • Rockaway NJ 07866
    • Patil N, Smith TJ. Neural network analysis speeds disease risk predictions, innovative clinical models transform cardiovascular assessment algorithms. Scientific Computing 2009; Rockaway NJ 07866, www. scientificcomputing.com.
    • (2009) Scientific Computing
    • Patil, N.1    Smith, T.J.2
  • 31
    • 0032843265 scopus 로고    scopus 로고
    • Neural networks for the biochemical prediction of bone mass
    • Queralto JM, Torres J, Guinot M. Neural networks for the biochemical prediction of bone mass. Clin Chem Lab Med 1999; 37:831-838
    • (1999) Clin Chem Lab Med , vol.37 , pp. 831-838
    • Queralto, J.M.1    Torres, J.2    Guinot, M.3
  • 32
    • 0032951017 scopus 로고    scopus 로고
    • Automated prozone effect detection in ferritin homogenous assays using neural networks
    • Papik K, Molnar B, Fedorczak P, Schaefer R, Lang F, Sreter L, et al. Automated prozone effect detection in ferritin homogenous assays using neural networks. Clin Chem Lab Med 1999; 37:471-476
    • (1999) Clin Chem Lab Med , vol.37 , pp. 471-476
    • Papik, K.1    Molnar, B.2    Fedorczak, P.3    Schaefer, R.4    Lang, F.5    Sreter, L.6
  • 33
    • 0014998720 scopus 로고
    • Human surface area: Comparison of the du Bois formula with direct photometric measurement
    • Mitchell D, Strydom NB, Van Graan CH, Van der Walt H. Human surface area: comparison of the du Bois formula with direct photometric measurement. Eur J Physiol 1971;325: 188-190
    • (1971) Eur J Physiol , vol.325 , pp. 188-190
    • Mitchell, D.1    Strydom, N.B.2    Van Graan, C.H.3    Van Der Walt, H.4
  • 34
    • 0017864678 scopus 로고
    • Body surface area calculated from the height and weight
    • Haycock GB, Schwarz GJ, Wisotsky DH. Body surface area calculated from the height and weight. J Pediatrics 1978;93: 62-66
    • (1978) J Pediatrics , vol.93 , pp. 62-66
    • Haycock, G.B.1    Schwarz, G.J.2    Wisotsky, D.H.3
  • 36
    • 0028342538 scopus 로고
    • Artificial neural networks for electrocardiographic diagnosis of healed myocardial infarction
    • Heden B, Edenbrandt L, Hasity WK, Pahlm O. Artificial neural networks for electrocardiographic diagnosis of healed myocardial infarction. Am J Cardiol 1994;74:5-8.
    • (1994) Am J Cardiol , vol.74 , pp. 5-8
    • Heden, B.1    Edenbrandt, L.2    Hasity, W.K.3    Pahlm, O.4
  • 37
    • 0027849294 scopus 로고
    • Constructive higher order network algorithms that is polynomial time
    • Redding NJ, Kowalczyk A, Downs T. Constructive higher order network algorithms that is polynomial time. Neural Network 1993;6:997-1010.
    • (1993) Neural Network , vol.6 , pp. 997-1010
    • Redding, N.J.1    Kowalczyk, A.2    Downs, T.3
  • 38
    • 0027313792 scopus 로고
    • Speed up learning and network optimization with extended back propagation
    • Sperduti A, Starita A. Speed up learning and network optimization with extended back propagation. Neural Network 1993; 6:365-383
    • (1993) Neural Network , vol.6 , pp. 365-383
    • Sperduti, A.1    Starita, A.2
  • 39
    • 0000599779 scopus 로고
    • Hypothesis driven constructive induction in AQ17-HCI: A method and experiments
    • Wnek J, Michalski RS. Hypothesis driven constructive induction in AQ17-HCI: a method and experiments. Mach Learn 1994;14:139-168
    • (1994) Mach Learn , vol.14 , pp. 139-168
    • Wnek, J.1    Michalski, R.S.2
  • 40
    • 76649134331 scopus 로고    scopus 로고
    • From artificial neural network to realistic neural network, chapter 14
    • New York: Springer
    • Lytton WW. From artificial neural network to realistic neural network, chapter 14. In: From computer to brain. New York: Springer, 2002, pp. 259-268
    • (2002) From Computer to Brain , pp. 259-268
    • Lytton, W.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.