메뉴 건너뛰기




Volumn 30, Issue 1, 2010, Pages 277-288

A survey of results on the q-Bernstein polynomials

Author keywords

Bernstein polynomials; Convexity; Q Bernstein basis; Q integers; Total positivity

Indexed keywords

RATIONAL FUNCTIONS;

EID: 76549126480     PISSN: 02724979     EISSN: 14643642     Source Type: Journal    
DOI: 10.1093/imanum/drn088     Document Type: Article
Times cited : (65)

References (41)
  • 1
    • 4544266859 scopus 로고    scopus 로고
    • Formulae relating little q-Jacobi, q-Hahn and q-Bernstein polynomials: Application to q-B?ezier curve evaluation
    • AREA, I., GODOY, E., WOZNY, P., LEWANOWICZ, S. & RONVEAUX, A. (2004) Formulae relating little q-Jacobi, q-Hahn and q-Bernstein polynomials: application to q-B?ezier curve evaluation. Integr. Transf. Spec. Funct., 15, 375-385.
    • (2004) Integr. Transf. Spec. Funct. , vol.15 , pp. 375-385
    • Area, I.1    Godoy, E.2    Wozny, P.3    Lewanowicz, S.4    Ronveaux, A.5
  • 2
    • 0000132624 scopus 로고
    • Inverse theorems for Bernstein polynomials
    • BERENS, H. & LORENTZ, G. G. (1972) Inverse theorems for Bernstein polynomials. Indiana Univ. Math. J., 21, 693-708.
    • (1972) Indiana Univ. Math. J. , vol.21 , pp. 693-708
    • Berens, H.1    Lorentz, G.G.2
  • 3
    • 0003030306 scopus 로고
    • Démonstration du théor̀eme de Weierstrass fondée
    • BERNSTEIN, S. N. (1912) Démonstration du théor̀eme de Weierstrass fondée. Commun. Kharkov Math. Soc., 13, 1-2.
    • (1912) Commun. Kharkov Math. Soc. , vol.13 , pp. 1-2
    • Bernstein, S.N.1
  • 4
    • 78549265092 scopus 로고
    • On approximation of continuous and of analytic functions
    • BOHMAN, H. (1952) On approximation of continuous and of analytic functions. Ark. Mat., 2, 43-56.
    • (1952) Ark. Mat. , vol.2 , pp. 43-56
    • Bohman, H.1
  • 5
    • 76549121118 scopus 로고    scopus 로고
    • Direct and inverse results for generalized q-Bernstein polynomials
    • (in press)
    • B̈UŸUKYAZICI, I. (2009) Direct and inverse results for generalized q-Bernstein polynomials. Far East J. Appl. Math. (in press).
    • (2009) Far East J. Appl. Math.
    • B̈uÿukyazici, I.1
  • 7
    • 38949188657 scopus 로고    scopus 로고
    • Modified Bernstein polynomials and Jacobi polynomials in q-calculus
    • DERRIENNIC, M.-M. (2005) Modified Bernstein polynomials and Jacobi polynomials in q-calculus. Rend. Circ. Mat. Palermo Ser. II, 76 (suppl), 269-290.
    • (2005) Rend. Circ. Mat. Palermo Ser. II. , vol.76 , Issue.SUPPL. , pp. 269-290
    • Derriennic, M.-M.1
  • 8
    • 34250793932 scopus 로고    scopus 로고
    • A generalization of rational Bernstein-B?ezier curves
    • DIS.IB̈U ŸUK, C. . & ORUC. , H. (2007) A generalization of rational Bernstein-B?ezier curves. BIT, 47, 313-323.
    • (2007) BIT , vol.47 , pp. 313-323
    • Disib̈u Ÿuk, C.1    Oruc, H.2
  • 9
    • 57649126348 scopus 로고    scopus 로고
    • Tensor product q-Bernstein polynomials
    • DIS.IB̈U ŸUK, C. . & ORUC. , H. (2008) Tensor product q-Bernstein polynomials. BIT, 48, 689-700.
    • (2008) BIT , vol.48 , pp. 689-700
    • Disib̈u Ÿuk, C.1    Oruc, H.2
  • 11
    • 68349152726 scopus 로고    scopus 로고
    • Direct and converse results for q-Bernstein operators
    • (in press)
    • FINTA, Z. (2009) Direct and converse results for q-Bernstein operators. Proc. Edinb. Math. Soc. (in press).
    • (2009) Proc. Edinb. Math. Soc.
    • Finta, Z.1
  • 13
    • 0036287075 scopus 로고    scopus 로고
    • Convergence of generalized Bernstein polynomials
    • IL'INSKII, A. & OSTROVSKA, S. (2002) Convergence of generalized Bernstein polynomials. J. Approx. Theory, 116, 100-112.
    • (2002) J. Approx. Theory , vol.116 , pp. 100-112
    • Il'Inskii, A.1    Ostrovska, S.2
  • 14
    • 84972538749 scopus 로고
    • Iterates of Bernstein polynomials
    • KELISKY, R. P. & RIVLIN, T. J. (1967) Iterates of Bernstein polynomials. Pac. J. Math., 21, 511-520.
    • (1967) Pac. J. Math. , vol.21 , pp. 511-520
    • Kelisky, R.P.1    Rivlin, T.J.2
  • 15
    • 0001236727 scopus 로고
    • On convergence of linear positive operators in the space of continuous functions
    • KOROVKIN, P. P. (1953) On convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR, 90, 961-964.
    • (1953) Dokl. Akad. Nauk SSSR , vol.90 , pp. 961-964
    • Korovkin, P.P.1
  • 17
    • 32144440258 scopus 로고    scopus 로고
    • Dual generalized Bernstein basis
    • LEWANOWICZ, S. & WOZNY, P. (2006) Dual generalized Bernstein basis. J. Approx. Theory, 138, 129-150.
    • (2006) J. Approx. Theory , vol.138 , pp. 129-150
    • Lewanowicz, S.1    Wozny, P.2
  • 18
    • 55349095033 scopus 로고    scopus 로고
    • Multivariate generalized Bernstein polynomials: Identities for orthogonal polynomials of two variables
    • LEWANOWICZ, S., WÓZNY, P., AREA, I. & GODOY, E. (2008) Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables. Numer. Algorithms, 49, 199-220.
    • (2008) Numer. Algorithms , vol.49 , pp. 199-220
    • Lewanowicz, S.1    Woźny, P.2    Area, I.3    Godoy, E.4
  • 19
    • 58049184521 scopus 로고
    • University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, Preprint No. 9
    • LUPAS. , A. (1987) A q-analogue of the Bernstein operator. University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, Preprint No. 9, pp. 85-92.
    • (1987) A Q-analogue of the Bernstein Operator , pp. 85-92
    • Lupas., A.1
  • 20
    • 54149117988 scopus 로고    scopus 로고
    • Approximation properties for generalized q-Bernstein polynomials
    • NOWAK, G. (2009) Approximation properties for generalized q-Bernstein polynomials. J. Math. Anal. Appl., 350, 50-55.
    • (2009) J. Math. Anal. Appl. , vol.350 , pp. 50-55
    • Nowak, G.1
  • 21
    • 4444337959 scopus 로고    scopus 로고
    • Ph.D. Thesis, School of Mathematical and Computational Sciences, University of St Andrews, St. Andrews
    • ORUC. , H. (1998) Generalized Bernstein polynomials and total positivity. Ph.D. Thesis, School of Mathematical and Computational Sciences, University of St Andrews, St. Andrews.
    • (1998) Generalized Bernstein Polynomials and Total Positivity
    • Oruc., H.1
  • 22
    • 22644449954 scopus 로고    scopus 로고
    • A generalization of the Bernstein polynomials
    • ORUC. , H. & PHILLIPS, G. M. (1999) A generalization of the Bernstein polynomials. Proc. Edinb. Math. Soc., 42, 403-413.
    • (1999) Proc. Edinb. Math. Soc. , vol.42 , pp. 403-413
    • Oruc., H.1    Phillips, G.M.2
  • 23
    • 0037294682 scopus 로고    scopus 로고
    • Q-Bernstein polynomials and B?ezier curves
    • ORUC. , H. & PHILLIPS, G. M. (2003) q-Bernstein polynomials and B?ezier curves. J. Comput. Appl. Math., 151, 1-12.
    • (2003) J. Comput. Appl. Math. , vol.151 , pp. 1-12
    • Oruc., H.1    Phillips, G.M.2
  • 24
    • 0036696337 scopus 로고    scopus 로고
    • On the convergence and iterates of q-Bernstein polynomials
    • ORUC., H. & TUNCER, N. (2002) On the convergence and iterates of q-Bernstein polynomials. J. Approx. Theory, 117, 301-313.
    • (2002) J. Approx. Theory , vol.117 , pp. 301-313
    • Oruc., H.1    Tuncer, N.2
  • 25
    • 0043159091 scopus 로고    scopus 로고
    • Q-Bernstein polynomials and their iterates
    • OSTROVSKA, S. (2003) q-Bernstein polynomials and their iterates. J. Approx. Theory, 123, 232-255.
    • (2003) J. Approx. Theory , vol.123 , pp. 232-255
    • Ostrovska, S.1
  • 26
    • 34248391701 scopus 로고    scopus 로고
    • On the q-Bernstein polynomials
    • OSTROVSKA, S. (2005) On the q-Bernstein polynomials. Adv. Stud. Contemp. Math., 11, 193-204.
    • (2005) Adv. Stud. Contemp. Math. , vol.11 , pp. 193-204
    • Ostrovska, S.1
  • 27
    • 31144465102 scopus 로고    scopus 로고
    • On the improvement of analytic properties under the limit q-Bernstein operators
    • OSTROVSKA, S. (2006a) On the improvement of analytic properties under the limit q-Bernstein operators. J. Approx. Theory, 138, 37-53.
    • (2006) J. Approx. Theory , vol.138 , pp. 37-53
    • Ostrovska, S.1
  • 28
    • 33846826629 scopus 로고    scopus 로고
    • On the Lupas. q-analogue of the Bernstein operator
    • OSTROVSKA, S. (2006b) On the Lupas. q-analogue of the Bernstein operator. Rocky Mt. J. Math., 36, 1615-1629.
    • (2006) Rocky Mt. J. Math. , vol.36 , pp. 1615-1629
    • Ostrovska, S.1
  • 29
    • 33644961254 scopus 로고    scopus 로고
    • The approximation by q-Bernstein polynomials in the case q. 1
    • OSTROVSKA, S. (2006c) The approximation by q-Bernstein polynomials in the case q. 1. Arch. Math., 86, 282-288.
    • (2006) Arch. Math. , vol.86 , pp. 282-288
    • Ostrovska, S.1
  • 30
    • 34248364864 scopus 로고    scopus 로고
    • The approximation of logarithmic function by q-Bernstein polynomials in the case q 1.
    • OSTROVSKA, S. (2007) The approximation of logarithmic function by q-Bernstein polynomials in the case q 1. Numer. Algorithms, 44, 69-82.
    • (2007) Numer. Algorithms , vol.44 , pp. 69-82
    • Ostrovska, S.1
  • 31
    • 40149083412 scopus 로고    scopus 로고
    • Q-Bernstein polynomials of the Cauchy kernel
    • OSTROVSKA, S. (2008) q-Bernstein polynomials of the Cauchy kernel. Appl. Math. Comput., 198, 261-270.
    • (2008) Appl. Math. Comput. , vol.198 , pp. 261-270
    • Ostrovska, S.1
  • 32
    • 0042235532 scopus 로고    scopus 로고
    • A de Casteljau algorithm for generalized Bernstein polynomials
    • PHILLIPS, G. M. (1996a) A de Casteljau algorithm for generalized Bernstein polynomials. BIT, 36, 232-236.
    • (1996) BIT , vol.36 , pp. 232-236
    • Phillips, G.M.1
  • 33
    • 0009552624 scopus 로고    scopus 로고
    • On generalized Bernstein polynomials
    • (D. F. Griffiths & G. A. Watson eds). Singapore: World Scientific
    • PHILLIPS, G. M. (1996b) On generalized Bernstein polynomials. Numerical Analysis: A. R. Mitchell 75th Birthday Volume (D. F. Griffiths & G. A. Watson eds). Singapore: World Scientific, pp. 263-269.
    • (1996) Numerical Analysis: A. R. Mitchell 75th Birthday Volume , pp. 263-269
    • Phillips, G.M.1
  • 34
    • 0009553236 scopus 로고    scopus 로고
    • Bernstein polynomials based on the q-integers the heritage of P. L. Chebyshev: A Festschrift in honor of the 70th birthday of T. J. Rivlin
    • PHILLIPS, G. M. (1997) Bernstein polynomials based on the q-integers. The heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin. Ann. Numer. Math., 14, 511-518.
    • (1997) Ann. Numer. Math. , vol.14 , pp. 511-518
    • Phillips, G.M.1
  • 36
    • 0000385289 scopus 로고
    • Approximation of functions by a new class of linear polynomial operators
    • STANCU, D. D. (1968) Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures Appl., 13, 1173-1194.
    • (1968) Rev. Roum. Math. Pures Appl. , vol.13 , pp. 1173-1194
    • Stancu, D.D.1
  • 37
    • 51249184757 scopus 로고
    • Approximation of functions by means of a new generalized Bernstein operator
    • STANCU, D. D. (1983) Approximation of functions by means of a new generalized Bernstein operator. Calcolo, 20, 211-229.
    • (1983) Calcolo , vol.20 , pp. 211-229
    • Stancu, D.D.1
  • 39
    • 26844561471 scopus 로고    scopus 로고
    • On some classes of q-parametric positive operators
    • VIDENSKII, V. S. (2005) On some classes of q-parametric positive operators. Oper. Theory Adv. Appl., 158, 213-222.
    • (2005) Oper. Theory Adv. Appl. , vol.158 , pp. 213-222
    • Videnskii, V.S.1
  • 40
    • 13344287024 scopus 로고    scopus 로고
    • Korovkin-type theorem and application
    • WANG, H. (2005) Korovkin-type theorem and application. J. Approx. Theory, 132, 258-264.
    • (2005) J. Approx. Theory , vol.132 , pp. 258-264
    • Wang, H.1
  • 41
    • 33947286902 scopus 로고    scopus 로고
    • Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1
    • WANG, H. (2007) Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1. J. Approx. Theory, 145, 182-195
    • (2007) J. Approx. Theory , vol.145 , pp. 182-195
    • Wang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.