메뉴 건너뛰기




Volumn 350, Issue 1, 2009, Pages 50-55

Approximation properties for generalized q-Bernstein polynomials

Author keywords

q Bernstein polynomials; q differences; q integers; Stancu polynomials

Indexed keywords


EID: 54149117988     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2008.09.003     Document Type: Article
Times cited : (59)

References (22)
  • 2
    • 33750056430 scopus 로고    scopus 로고
    • Direct and converse results for Stancu operator
    • Finta Z. Direct and converse results for Stancu operator. Period. Math. Hungar. 44 1 (2002) 1-6
    • (2002) Period. Math. Hungar. , vol.44 , Issue.1 , pp. 1-6
    • Finta, Z.1
  • 3
    • 54149099030 scopus 로고    scopus 로고
    • On approximation properties of Stancu's operators
    • Finta Z. On approximation properties of Stancu's operators. Stud. Univ. Babes-Bolyai Math. 47 4 (2002) 47-55
    • (2002) Stud. Univ. Babes-Bolyai Math. , vol.47 , Issue.4 , pp. 47-55
    • Finta, Z.1
  • 4
    • 51249179855 scopus 로고
    • Quantitative theorems on approximation by Bernstein-Stancu operators
    • Gonska H.H., and Meier J. Quantitative theorems on approximation by Bernstein-Stancu operators. Calcolo 21 4 (1984) 317-335
    • (1984) Calcolo , vol.21 , Issue.4 , pp. 317-335
    • Gonska, H.H.1    Meier, J.2
  • 6
    • 0036287075 scopus 로고    scopus 로고
    • Convergence of generalized Bernstein polynomials
    • Il'inskii A., and Ostrovska S. Convergence of generalized Bernstein polynomials. J. Approx. Theory 116 1 (2002) 100-112
    • (2002) J. Approx. Theory , vol.116 , Issue.1 , pp. 100-112
    • Il'inskii, A.1    Ostrovska, S.2
  • 8
    • 0003214613 scopus 로고
    • Bernstein Polynomials
    • Univ. of Toronto Press, Toronto
    • Lorentz G.G. Bernstein Polynomials. Mathematical Expo. vol. 8 (1953), Univ. of Toronto Press, Toronto
    • (1953) Mathematical Expo. , vol.8
    • Lorentz, G.G.1
  • 9
    • 0009553236 scopus 로고    scopus 로고
    • Bernstein polynomials based on the q-integers
    • Phillips G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4 (1997) 511-518
    • (1997) Ann. Numer. Math. , vol.4 , pp. 511-518
    • Phillips, G.M.1
  • 10
    • 0042235532 scopus 로고    scopus 로고
    • A de Casteljau algorithm for generalized Bernstein polynomials
    • Phillips G.M. A de Casteljau algorithm for generalized Bernstein polynomials. BIT 36 (1996) 232-236
    • (1996) BIT , vol.36 , pp. 232-236
    • Phillips, G.M.1
  • 11
    • 22644449954 scopus 로고    scopus 로고
    • A generalization of the Bernstein polynomials
    • Oruc H., and Phillips G.M. A generalization of the Bernstein polynomials. Proc. Edinb. Math. Soc. 42 (1999) 403-413
    • (1999) Proc. Edinb. Math. Soc. , vol.42 , pp. 403-413
    • Oruc, H.1    Phillips, G.M.2
  • 12
    • 0034408008 scopus 로고    scopus 로고
    • Explicit factorization of the Vandermonde matrix
    • Oruc H., and Phillips G.M. Explicit factorization of the Vandermonde matrix. Linear Algebra Appl. 315 (2000) 113-123
    • (2000) Linear Algebra Appl. , vol.315 , pp. 113-123
    • Oruc, H.1    Phillips, G.M.2
  • 13
    • 0043159091 scopus 로고    scopus 로고
    • q-Bernstein polynomials and their iterates
    • Ostrovska S. q-Bernstein polynomials and their iterates. J. Approx. Theory 123 2 (2003) 232-255
    • (2003) J. Approx. Theory , vol.123 , Issue.2 , pp. 232-255
    • Ostrovska, S.1
  • 14
    • 33644944060 scopus 로고    scopus 로고
    • On the limit q-Bernstein operators
    • Ostrovska S. On the limit q-Bernstein operators. Math. Balkanica (N.S.) 18 (2004) 165-172
    • (2004) Math. Balkanica (N.S.) , vol.18 , pp. 165-172
    • Ostrovska, S.1
  • 15
    • 31144465102 scopus 로고    scopus 로고
    • On the improvement of analytic properties under the limit q-Bernstein operators
    • Ostrovska S. On the improvement of analytic properties under the limit q-Bernstein operators. J. Approx. Theory 138 1 (2006) 37-53
    • (2006) J. Approx. Theory , vol.138 , Issue.1 , pp. 37-53
    • Ostrovska, S.1
  • 16
    • 54149096001 scopus 로고
    • Some approximation properties of Bernstein and Kantorovic polynomials
    • Pych-Taberska P. Some approximation properties of Bernstein and Kantorovic polynomials. Funct. Approx. 6 (1978) 57-67
    • (1978) Funct. Approx. , vol.6 , pp. 57-67
    • Pych-Taberska, P.1
  • 17
    • 0011037303 scopus 로고
    • On the rate of pointwise convergence of Bernstein and Kantorovic polynomials
    • Pych-Taberska P. On the rate of pointwise convergence of Bernstein and Kantorovic polynomials. Funct. Approx. 16 (1988) 63-76
    • (1988) Funct. Approx. , vol.16 , pp. 63-76
    • Pych-Taberska, P.1
  • 18
    • 0000385289 scopus 로고
    • Approximation of functions by a new class of linear polynomial operators
    • Stancu D.D. Approximation of functions by a new class of linear polynomial operators. Rev. Roumaine Math. Pures Appl. XIII 8 (1968) 1173-1194
    • (1968) Rev. Roumaine Math. Pures Appl. , vol.XIII , Issue.8 , pp. 1173-1194
    • Stancu, D.D.1
  • 19
    • 26844561471 scopus 로고    scopus 로고
    • On some classes of q-parametric positive operators
    • Videnskii V.S. On some classes of q-parametric positive operators. Oper. Theory Adv. Appl. 158 (2005) 213-222
    • (2005) Oper. Theory Adv. Appl. , vol.158 , pp. 213-222
    • Videnskii, V.S.1
  • 20
    • 26844535032 scopus 로고    scopus 로고
    • The rate of convergence of q-Bernstein polynomials for 0 < q < 1
    • Wang H., and Meng F. The rate of convergence of q-Bernstein polynomials for 0 < q < 1. J. Approx. Theory 136 2 (2005) 151-158
    • (2005) J. Approx. Theory , vol.136 , Issue.2 , pp. 151-158
    • Wang, H.1    Meng, F.2
  • 21
    • 13344287024 scopus 로고    scopus 로고
    • Korovkin-type theorem and application
    • Wang H. Korovkin-type theorem and application. J. Approx. Theory 132 2 (2005) 258-264
    • (2005) J. Approx. Theory , vol.132 , Issue.2 , pp. 258-264
    • Wang, H.1
  • 22
    • 33947286902 scopus 로고    scopus 로고
    • Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1
    • Wang H. Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1. J. Approx. Theory 145 (2007) 182-195
    • (2007) J. Approx. Theory , vol.145 , pp. 182-195
    • Wang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.