-
2
-
-
0039950361
-
Random dynamical systems
-
Johnson, R. (ed.), Dynamical Systems. Springer, Berlin/Heidelberg/New York
-
Arnold, L. (1995). Random dynamical systems. In Johnson, R. (ed.), Dynamical Systems. Lecture Notes Math. 1609, Springer, Berlin/Heidelberg/New York, pp. 1-43.
-
(1995)
Lecture Notes Math.
, vol.1609
, pp. 1-43
-
-
Arnold, L.1
-
3
-
-
0345100730
-
Additive noise turns a hyperbolic fixed point into a stationary solution
-
Arnold, L., Crauel, H., and Eckmann, J.-P. (eds.), Lyapunor Exponents, Oberwolfach 1990. Springer, Berlin/Heidelberg/New York
-
Arnold, L., and Boxler, P. (1991). Additive noise turns a hyperbolic fixed point into a stationary solution. In Arnold, L., Crauel, H., and Eckmann, J.-P. (eds.), Lyapunor Exponents, Oberwolfach 1990. Lecture Notes Math. I486, Springer, Berlin/Heidelberg/New York, pp. 159-164.
-
(1991)
Lecture Notes Math.
, vol.486
, pp. 159-164
-
-
Arnold, L.1
Boxler, P.2
-
5
-
-
51249190715
-
The structure of ergodic measures for compact group extensions
-
Keynes, H. B., and Newton, D. (1974). The structure of ergodic measures for compact group extensions. Israel J. Math. 18, 363-389.
-
(1974)
Israel J. Math.
, vol.18
, pp. 363-389
-
-
Keynes, H.B.1
Newton, D.2
-
6
-
-
0003387713
-
The upper Lyapunov exponents of SL(2, ℝ) cocycles: Discontinuity and the problem of positivity
-
Arnold, L., Crauel, H., and Eckmann, J.-P. (eds.), Lyapunor Exponents, Oberwolfach 1990. Springer, Berlin/Heidelberg/New York
-
Knill, O. (1991 ). The upper Lyapunov exponents of SL(2, ℝ) cocycles: Discontinuity and the problem of positivity. In Arnold, L., Crauel, H., and Eckmann, J.-P. (eds.), Lyapunor Exponents, Oberwolfach 1990. Lecture Notes Math. 1486, Springer, Berlin/Heidelberg/New York, pp. 86-97.
-
(1991)
Lecture Notes Math.
, vol.1486
, pp. 86-97
-
-
Knill, O.1
-
7
-
-
0031631675
-
Random perturbations of Axiom A basic sets
-
Liu, P.-D. (1988). Random perturbations of Axiom A basic sets. J. Stat. Phys. 90, 467-490.
-
(1988)
J. Stat. Phys.
, vol.90
, pp. 467-490
-
-
Liu, P.-D.1
-
8
-
-
53149111474
-
Examples of random dynamical systems without random fixed points
-
Krakow
-
Ochs, G. (1998). Examples of random dynamical systems without random fixed points. Universitatis lagellonicae Ada Mathematics, Fasc. XXXVI, Krakow, pp. 133-141.
-
(1998)
Universitatis Lagellonicae Ada Mathematics, Fasc.
, vol.36
, pp. 133-141
-
-
Ochs, G.1
-
10
-
-
0000858711
-
A random fixed point theorem based on Lyapunov exponents
-
Schmalfuß, B. (1996). A random fixed point theorem based on Lyapunov exponents. Rand. Comp. Dyn. 4, 267-268.
-
(1996)
Rand. Comp. Dyn.
, vol.4
, pp. 267-268
-
-
Schmalfuß, B.1
-
12
-
-
84958426430
-
Amenability, Kazdan's property T, strong ergodicity and invariant means for ergodic group actions
-
Schmidt, K. (1981). Amenability, Kazdan's property T, strong ergodicity and invariant means for ergodic group actions. Ergod. Theory Dynam. Syst. 1, 223-236.
-
(1981)
Ergod. Theory Dynam. Syst.
, vol.1
, pp. 223-236
-
-
Schmidt, K.1
-
13
-
-
0010209242
-
Random walks on compact groups and the existence of cocycles
-
Zimmer, R. ( 1977). Random walks on compact groups and the existence of cocycles. Israel J. Math. 26, 84-90.
-
(1977)
Israel J. Math.
, vol.26
, pp. 84-90
-
-
Zimmer, R.1
|