-
6
-
-
76249124422
-
-
D. S. Jin (private communication).
-
-
-
Jin, D.S.1
-
7
-
-
4143052321
-
-
SCIEAS 0036-8075 10.1126/science.1100818
-
C. Chin, Science SCIEAS 0036-8075 10.1126/science.1100818 305, 1128 (2004).
-
(2004)
Science
, vol.305
, pp. 1128
-
-
Chin, C.1
-
8
-
-
53549101888
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.140403
-
A. Schirotzek, Y. I. Shin, C. H. Schunck, and W. Ketterle, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101.140403 101, 140403 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 140403
-
-
Schirotzek, A.1
Shin, Y.I.2
Schunck, C.H.3
Ketterle, W.4
-
9
-
-
66749135271
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.102.230402
-
A. Schirotzek, C. H. Wu, A. Sommer, and M. W. Zwierlein, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.102.230402 102, 230402 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 230402
-
-
Schirotzek, A.1
Wu, C.H.2
Sommer, A.3
Zwierlein, M.W.4
-
10
-
-
54849428140
-
-
APNYA6 0003-4916 10.1016/j.aop.2008.03.004
-
S. Tan, Ann. Phys. APNYA6 0003-4916 10.1016/j.aop.2008.03.004 323, 2952 (2008);
-
(2008)
Ann. Phys.
, vol.323
, pp. 2952
-
-
Tan, S.1
-
11
-
-
54849430750
-
-
APNYA6 0003-4916 10.1016/j.aop.2008.03.005
-
S. Tan, Ann. Phys. APNYA6 0003-4916 10.1016/j.aop.2008.03.005 323, 2971 (2008);
-
(2008)
Ann. Phys.
, vol.323
, pp. 2971
-
-
Tan, S.1
-
12
-
-
54849406793
-
-
APNYA6 0003-4916 10.1016/j.aop.2008.03.003
-
S. Tan, Ann. Phys. APNYA6 0003-4916 10.1016/j.aop.2008.03.003 323, 2987 (2008).
-
(2008)
Ann. Phys.
, vol.323
, pp. 2987
-
-
Tan, S.1
-
13
-
-
44249127245
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.100.205301
-
E. Braaten and L. Platter, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.205301 100, 205301 (2008);
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 205301
-
-
Braaten, E.1
Platter, L.2
-
14
-
-
66749094700
-
-
EPJBFY 1434-6028 10.1140/epjb/e2009-00040-8
-
F. Werner, L. Tarruell, and Y. Castin, Eur. Phys. J. B EPJBFY 1434-6028 10.1140/epjb/e2009-00040-8 68, 401 (2009);
-
(2009)
Eur. Phys. J. B
, vol.68
, pp. 401
-
-
Werner, F.1
Tarruell, L.2
Castin, Y.3
-
15
-
-
59949085844
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.79.023601
-
S. Zhang and A. J. Leggett, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.79.023601 79, 023601 (2009).
-
(2009)
Phys. Rev. A
, vol.79
, pp. 023601
-
-
Zhang, S.1
Leggett, A.J.2
-
16
-
-
76249115516
-
-
edited by G. Iadonisi, J. R. Schrieffer, and M. L. Chiafalo (IOS Press, Amsterdam
-
M. Randeria, in Proceedings of the International School of Physics "Enrico Fermi," Course CXXXVI on High Temperature Superconductivity, edited by, G. Iadonisi., J. R. Schrieffer. and, M. L. Chiafalo, (IOS Press, Amsterdam, 1998);
-
(1998)
Proceedings of the International School of Physics "enrico Fermi," Course CXXXVI on High Temperature Superconductivity
-
-
Randeria, M.1
-
17
-
-
76249128109
-
-
cond-mat/9710223.
-
M. Randeria, e-print arXiv: cond-mat/9710223.
-
-
-
Randeria, M.1
-
18
-
-
0009741811
-
-
V. A. Belyakov, Sov. Phys. JETP 13, 850 (1961). Note that Ref. [1] has a typographical error in the last equation of (5.24): the prefactor of k-4 is too large by a factor of 4.
-
(1961)
Sov. Phys. JETP
, vol.13
, pp. 850
-
-
Belyakov, V.A.1
-
19
-
-
76249100102
-
-
For a hard-sphere gas, a=r0, the range, and the "large"-k regime where n(k)~k-4 is kF k 1/r0. Thus, unlike Ref. [9], where a r0, we cannot set r0=0.
-
For a hard-sphere gas, a=r0, the range, and the "large"-k regime where n(k)~k-4 is kF k 1/r0. Thus, unlike Ref. [9], where a r0, we cannot set r0=0.
-
-
-
-
20
-
-
76249101724
-
-
We use μ=εF in L and G0 since the corrections to μ are of order kFa. This is also done for the large-N calculation for the polarized Fermi gas below.
-
We use μ=εF in L and G0 since the corrections to μ are of order kFa. This is also done for the large-N calculation for the polarized Fermi gas below.
-
-
-
-
21
-
-
33947275050
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.75.033608
-
P. Nikolic and S. Sachdev, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.75.033608 75, 033608 (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 033608
-
-
Nikolic, P.1
Sachdev, S.2
-
22
-
-
76249091691
-
-
The simplification Γ g+g2L for the hard sphere gas is valid only for ω 1/ma2. ImΣ grows indefinitely for larger ω. We subtract out this singular behavior S(z)=-i(22/3π)(kFa)2εFz and then the Kramers-Kronig transform ImΣ=ImΣ-ImS. The real self-energy is then ReΣ=ReΣ +ReS.
-
The simplification Γ g+g2L for the hard sphere gas is valid only for ω 1/ma2. ImΣ grows indefinitely for larger ω. We subtract out this singular behavior S(z)=-i(22/3π)(kFa)2εFz and then the Kramers-Kronig transform ImΣ=ImΣ-ImS. The real self-energy is then ReΣ=ReΣ +ReS.
-
-
-
-
23
-
-
76249127621
-
-
We have checked our numerics against known results [1] for chemical potential μ, quasiparticle residue Z, effective mass m*, and the scattering rate near the Fermi surface.
-
We have checked our numerics against known results [1] for chemical potential μ, quasiparticle residue Z, effective mass m*, and the scattering rate near the Fermi surface.
-
-
-
-
24
-
-
76249088105
-
-
Here a r0 and we set the range r0=0.
-
Here a r0 and we set the range r0=0.
-
-
-
-
25
-
-
33751023492
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.97.200403
-
C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.200403 97, 200403 (2006);
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 200403
-
-
Lobo, C.1
Recati, A.2
Giorgini, S.3
Stringari, S.4
-
26
-
-
34247847690
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.98.180402
-
R. Combescot, A. Recati, C. Lobo, and F. Chevy, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.180402 98, 180402 (2007);
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 180402
-
-
Combescot, R.1
Recati, A.2
Lobo, C.3
Chevy, F.4
-
27
-
-
38549131501
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.100.030401
-
S. Pilati and S. Giorgini, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.030401 100, 030401 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 030401
-
-
Pilati, S.1
Giorgini, S.2
-
28
-
-
52349103172
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.78.033614
-
M. Veillette, E. G. Moon, A. Lamacraft, L. Radzihovsky, S. Sachdev, and D. E. Sheehy, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.78.033614 78, 033614 (2008);
-
(2008)
Phys. Rev. A
, vol.78
, pp. 033614
-
-
Veillette, M.1
Moon, E.G.2
Lamacraft, A.3
Radzihovsky, L.4
Sachdev, S.5
Sheehy, D.E.6
-
30
-
-
76249107273
-
-
We have obtained more stringent bounds for the imbalanced case, using the detailed structure of ImΓ, but the simpler analysis described here suffices to establish a range linear in k centered about -ε(k).
-
We have obtained more stringent bounds for the imbalanced case, using the detailed structure of ImΓ, but the simpler analysis described here suffices to establish a range linear in k centered about -ε(k).
-
-
-
-
31
-
-
71549160820
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.80.063612
-
R. Haussmann, M. Punk, and W. Zwerger, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.80.063612 80, 063612 (2009).
-
(2009)
Phys. Rev. A
, vol.80
, pp. 063612
-
-
Haussmann, R.1
Punk, M.2
Zwerger, W.3
-
32
-
-
40749141083
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.77.023626
-
R. B. Diener, R. Sensarma, and M. Randeria, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.77.023626 77, 023626 (2008);
-
(2008)
Phys. Rev. A
, vol.77
, pp. 023626
-
-
Diener, R.B.1
Sensarma, R.2
Randeria, M.3
-
33
-
-
76249102877
-
-
see Sec. VI and especially Eq. (34).
-
see Sec. VI and especially Eq. (34).
-
-
-
-
34
-
-
40749127161
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.100.010402
-
A. Perali, P. Pieri, and G. C. Strinati, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.010402 100, 010402 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 010402
-
-
Perali, A.1
Pieri, P.2
Strinati, G.C.3
-
35
-
-
76249117484
-
-
Our result here corrects a factor of 2 in, e-print arXiv: 0903.3006 [cond-mat].
-
Our result here corrects a factor of 2 in W. Schneider, V. Shenoy, and M. Randeria, e-print arXiv: 0903.3006 [cond-mat].
-
-
-
Schneider, W.1
Shenoy, V.2
Randeria, M.3
-
36
-
-
76249126242
-
-
This large-ω tail is valid for εF ω 1/ma'2≤1/mr02, where a' characterizes the final state interactions and r0 is the range.
-
This large-ω tail is valid for εF ω 1/ma'2≤1/mr02, where a' characterizes the final state interactions and r0 is the range.
-
-
-
-
37
-
-
70350133672
-
-
PRLTAO 1745-2473 10.1038/nphys1345, attribute the coefficient Δ ∞ pairing fluctuations above Tc. Our results, however, show that this universal tail is related to the "contact" and not necessarily to pairing, either above or below Tc.
-
P. Pieri, A. Perali, and G. C. Strinati, Nature Phys. PRLTAO 1745-2473 10.1038/nphys1345 5, 736 (2009), attribute the coefficient Δ ∞ pairing fluctuations above Tc. Our results, however, show that this universal tail is related to the "contact" and not necessarily to pairing, either above or below Tc.
-
(2009)
Nature Phys.
, vol.5
, pp. 736
-
-
Pieri, P.1
Perali, A.2
Strinati, G.C.3
-
38
-
-
66749177938
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.79.053640
-
R. Combescot, F. Alzetto, and X. Leyronas, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.79.053640 79, 053640 (2009).
-
(2009)
Phys. Rev. A
, vol.79
, pp. 053640
-
-
Combescot, R.1
Alzetto, F.2
Leyronas, X.3
|