-
1
-
-
54849433766
-
-
note
-
* is introduced in [48] and is large near a narrow Feshbach resonance [48]. The results in this paper are not applicable to narrow Feshbach resonances under usual experimental conditions.
-
-
-
-
2
-
-
54849430140
-
-
note
-
2) ∼ 1 mK.
-
-
-
-
3
-
-
10344224765
-
-
See e.g. in particular its footnote 31
-
See e.g. Viverit L., et al. Phys. Rev. A 69 (2004) 013607 in particular its footnote 31
-
(2004)
Phys. Rev. A
, vol.69
, pp. 013607
-
-
Viverit, L.1
-
4
-
-
54849406120
-
-
S. Tan, cond-mat/0505200.
-
S. Tan, cond-mat/0505200.
-
-
-
-
6
-
-
54849408729
-
-
C.A. Regal, et al., cond-mat/0507316.
-
C.A. Regal, et al., cond-mat/0507316.
-
-
-
-
7
-
-
0002286899
-
-
Griffin A., Snoke D.W., and Stringari S. (Eds), Cambridge University, Cambridge and references therein
-
Randeria M. In: Griffin A., Snoke D.W., and Stringari S. (Eds). Bose-Einstein Condensation (1995), Cambridge University, Cambridge 355-392 and references therein
-
(1995)
Bose-Einstein Condensation
, pp. 355-392
-
-
Randeria, M.1
-
10
-
-
18244406807
-
-
Chen Q., et al. Phys. Rep. 412 (2005) 1
-
(2005)
Phys. Rep.
, vol.412
, pp. 1
-
-
Chen, Q.1
-
11
-
-
54849429321
-
-
note
-
↑ ↓ ∼ a.
-
-
-
-
12
-
-
54849404256
-
-
note
-
As is well known, for ultracold atoms near a Feshbach resonance controlled by a magnetic field B, when B is tuned, 1 / a changes.
-
-
-
-
13
-
-
54849405715
-
-
note
-
i 〉.
-
-
-
-
16
-
-
54849420041
-
-
note
-
Although such a pseudopotential was previously used [11,12] in the context of hard sphere interaction, it is a much better approximation for particles interacting with a large scattering length and a small interaction radius; in the limit of zero interaction radius (but a nonzero scattering length), this pseudopotential becomes exact.
-
-
-
-
20
-
-
54849430702
-
-
S. Tan, cond-mat/0505615.
-
S. Tan, cond-mat/0505615.
-
-
-
-
21
-
-
54849431350
-
-
note
-
- (9 + 2 γ) at large k, and 9 + 2 γ ≥ 8.5454. Tiny clusters with more fermions contribute even weaker tails, because it is even less probable for more fermions to cluster in a tiny region.
-
-
-
-
22
-
-
54849407938
-
-
note
-
Of ultracold fermionic atoms with large scattering length, the "true" ground state is of course an uninteresting solid. The ground state referred to in this paper is physically a quasistable state, whose lifetime is shown by Petrov et al. [16] to be long because of Fermi statistics [16].
-
-
-
-
24
-
-
36149018678
-
-
Wu T.T. Phys. Rev. 115 (1959) 1390
-
(1959)
Phys. Rev.
, vol.115
, pp. 1390
-
-
Wu, T.T.1
-
27
-
-
54849430701
-
-
S. Tan, K. Levin, cond-mat/0506293.
-
S. Tan, K. Levin, cond-mat/0506293.
-
-
-
-
29
-
-
0037073902
-
-
O'Hara K.M., et al. Science 298 (2002) 2179
-
(2002)
Science
, vol.298
, pp. 2179
-
-
O'Hara, K.M.1
-
30
-
-
2442480426
-
-
and references therein
-
Ho T.L. Phys. Rev. Lett. 92 (2004) 090402 and references therein
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 090402
-
-
Ho, T.L.1
-
34
-
-
54849437458
-
-
G.E. Astrakharchik et al., cond-mat/0507483.
-
G.E. Astrakharchik et al., cond-mat/0507483.
-
-
-
-
35
-
-
34250934748
-
-
Lenz W. Z. Phys. 56 (1929) 778
-
(1929)
Z. Phys.
, vol.56
, pp. 778
-
-
Lenz, W.1
-
44
-
-
54849434164
-
-
note
-
F {divides} a {divides})] (see, for example, [37]), but it does not affect the momentum distribution away from the Fermi surface appreciably, in the BCS limit.
-
-
-
-
45
-
-
54849437689
-
-
note
-
A practical caveat is that in the BEC limit, the many-body corrections to C [all terms after the first term on the right hand side of Eq. (23)] are small and difficult to detect in experiment.
-
-
-
-
46
-
-
2942592510
-
-
note
-
When s is large, high temperature expansion applies. See T.L. Ho, E.J. Mueller, Phys. Rev. Lett. 92 (2004) 160404. If we combine this approach with Eq. (1), we can also deduce a high temperature expansion [2] of C.
-
-
-
-
47
-
-
54849438506
-
-
note
-
0) from the s-wave contact interaction, but well-controlled corrections should be possible.
-
-
-
-
48
-
-
54849423406
-
-
note
-
To change the system's scattering length, there must be some physical means. For ultracold atoms near a Feshbach resonance, we can, as is well known, achieve this by tuning the external magnetic field B. The system will absorb energy from the electromagnetic field or release energy to it when B is tuned, and the law of energy conservation will not be violated.
-
-
-
-
49
-
-
54849406109
-
-
note
-
2 / ℏ is of the order 1-10 ns.
-
-
-
-
50
-
-
54849425319
-
-
note
-
0 is broken.
-
-
-
-
51
-
-
0037061822
-
-
For a general fermionic system, the question whether momentum distribution is observable is raised by R.J. Furnstahl, H.-W. Hammer, Phys. Lett. B 531 (2002) 203.
-
For a general fermionic system, the question whether momentum distribution is observable is raised by R.J. Furnstahl, H.-W. Hammer, Phys. Lett. B 531 (2002) 203.
-
-
-
|