-
1
-
-
27344441857
-
Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions
-
DOI 10.1016/j.jlumin.2005.03.001, PII S0022231305000785
-
L. Li, H. Qian, N. Fang, and J. Ren, J. Lumin. JLUMA8 0022-2313 116, 59 (2006). 10.1016/j.jlumin.2005.03.001 (Pubitemid 41525728)
-
(2006)
Journal of Luminescence
, vol.116
, Issue.1-2
, pp. 59-66
-
-
Li, L.1
Qian, H.2
Fang, N.3
Ren, J.4
-
5
-
-
0029404579
-
-
SCIEAS 0036-8075,. 10.1126/science.270.5240.1335
-
C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science SCIEAS 0036-8075 270, 1335 (1995). 10.1126/science.270.5240.1335
-
(1995)
Science
, vol.270
, pp. 1335
-
-
Murray, C.B.1
Kagan, C.R.2
Bawendi, M.G.3
-
6
-
-
44649090626
-
-
JCRGAE 0022-0248,. 10.1016/j.jcrysgro.2008.03.032
-
S. O. Oluwafemi, N. Revaprasadu, and A. J. Ramirez, J. Cryst. Growth JCRGAE 0022-0248 310, 3230 (2008). 10.1016/j.jcrysgro.2008.03.032
-
(2008)
J. Cryst. Growth
, vol.310
, pp. 3230
-
-
Oluwafemi, S.O.1
Revaprasadu, N.2
Ramirez, A.J.3
-
7
-
-
0041494363
-
-
NNOTER 0957-4484,. 10.1088/0957-4484/14/7/201
-
W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, and A. P. Alivisatos, Nanotechnology NNOTER 0957-4484 14, R15 (2003). 10.1088/0957-4484/14/7/201
-
(2003)
Nanotechnology
, vol.14
, pp. 15
-
-
Parak, W.J.1
Gerion, D.2
Pellegrino, T.3
Zanchet, D.4
Micheel, C.5
Williams, S.C.6
Boudreau, R.7
Le Gros, M.A.8
Larabell, C.A.9
Alivisatos, A.P.10
-
8
-
-
13944262081
-
Compressive and tensile stress in colloidal CdSe semiconductor quantum dots
-
DOI 10.1103/PhysRevB.70.235311, 235311
-
R. W. Meulenberg, T. Jennings, and G. F. Strouse, Phys. Rev. B PRBMDO 0163-1829 70, 235311 (2004). 10.1103/PhysRevB.70.235311 (Pubitemid 40270759)
-
(2004)
Physical Review B - Condensed Matter and Materials Physics
, vol.70
, Issue.23
, pp. 1-5
-
-
Meulenberg, R.W.1
Jennings, T.2
Strouse, G.F.3
-
9
-
-
0000863495
-
-
JCPSA6 0021-9606,. 10.1063/1.476216
-
J. Rockenberger, L. Tröger, A. L. Rogach, M. Tischer, M. Grundmann, A. Eychmüller, and H. Weller, J. Chem. Phys. JCPSA6 0021-9606 108, 7807 (1998). 10.1063/1.476216
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 7807
-
-
Rockenberger, J.1
Tröger, L.2
Rogach, A.L.3
Tischer, M.4
Grundmann, M.5
Eychmüller, A.6
Weller, H.7
-
11
-
-
0040999420
-
-
JPCHAX 0022-3654,. 10.1021/j100082a044
-
T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller, and H. Weller, J. Phys. Chem. JPCHAX 0022-3654 98, 7665 (1994). 10.1021/j100082a044
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 7665
-
-
Vossmeyer, T.1
Katsikas, L.2
Giersig, M.3
Popovic, I.G.4
Diesner, K.5
Chemseddine, A.6
Eychmüller, A.7
Weller, H.8
-
12
-
-
0036398825
-
-
PPCPFQ 1463-9076,. 10.1039/b202101c
-
H. Döllefeld, K. Hoppe, J. Kolny, K. Schilling, H. Weller, and A. Eychmuller, Phys. Chem. Chem. Phys. PPCPFQ 1463-9076 4, 4747 (2002). 10.1039/b202101c
-
(2002)
Phys. Chem. Chem. Phys.
, vol.4
, pp. 4747
-
-
Döllefeld, H.1
Hoppe, K.2
Kolny, J.3
Schilling, K.4
Weller, H.5
Eychmuller, A.6
-
13
-
-
0001672713
-
-
JPCBFK 1089-5647,. 10.1021/jp984833b
-
A. L. Rogach, A. Kornowski, M. Gao, A. Eychmuller, and H. Weller, J. Phys. Chem. B JPCBFK 1089-5647 103, 3065 (1999). 10.1021/jp984833b
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 3065
-
-
Rogach, A.L.1
Kornowski, A.2
Gao, M.3
Eychmuller, A.4
Weller, H.5
-
14
-
-
69549104211
-
-
A. Eichhöfer, C. V. Hanisch, M. Jacobsohn, and U. Banin, Mater. Res. Soc. Symp. D9.53.1, 636 (2002).
-
(2002)
Mater. Res. Soc. Symp.
, vol.9531
, pp. 636
-
-
Eichhöfer, A.1
Hanisch, C.V.2
Jacobsohn, M.3
Banin, U.4
-
16
-
-
75749127221
-
-
AIP Conf. Proc. (accepted).
-
D. L. Ferreira, F. O. Silva, L. C. V. Viol, P. Licínio, M. Valadares, L. A. Cury, M. A. Schiavon, and J. L. A. Alves, " Size selective precipitation of CdSe colloidal quantum dots.," AIP Conf. Proc. (accepted).
-
Size Selective Precipitation of CdSe Colloidal Quantum Dots
-
-
Ferreira, D.L.1
Silva, F.O.2
Viol, L.C.V.3
Licínio, P.4
Valadares, M.5
Cury, L.A.6
Schiavon, M.A.7
Alves, J.L.A.8
-
17
-
-
0001668468
-
-
JPCBFK 1089-5647,. 10.1021/jp9823603
-
M. Gao, A. L. Rogach, A. Kornowski, S. Kirstein, A. Eychmuller, H. Mohawald, and H. Weller, J. Phys. Chem. B JPCBFK 1089-5647 102, 8360 (1998). 10.1021/jp9823603
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 8360
-
-
Gao, M.1
Rogach, A.L.2
Kornowski, A.3
Kirstein, S.4
Eychmuller, A.5
Mohawald, H.6
Weller, H.7
-
18
-
-
0037028945
-
Control of photoluminescence properties of CdSe nanocrystals in growth
-
DOI 10.1021/ja017002j
-
L. Qu and X. Peng, J. Am. Chem. Soc. JACSAT 0002-7863 124, 2049 (2002). 10.1021/ja017002j (Pubitemid 34215323)
-
(2002)
Journal of the American Chemical Society
, vol.124
, Issue.9
, pp. 2049-2055
-
-
Qu, L.1
Peng, X.2
-
19
-
-
0000939999
-
-
JACSAT 0002-7863,. 10.1021/ja00072a025
-
C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. JACSAT 0002-7863 115, 8706 (1993). 10.1021/ja00072a025
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 8706
-
-
Murray, C.B.1
Norris, D.J.2
Bawendi, M.G.3
-
20
-
-
4344651304
-
-
NNOTER 0957-4484,. 10.1088/0957-4484/15/8/019
-
D. L. Ferreira and J. L. A. Alves, Nanotechnology NNOTER 0957-4484 15, 975 (2004). 10.1088/0957-4484/15/8/019
-
(2004)
Nanotechnology
, vol.15
, pp. 975
-
-
Ferreira, D.L.1
Alves, J.L.A.2
-
21
-
-
1842384255
-
-
The chemical techniques allow for the preparation of high crystalline quantum dots in sizes ranging at 10-30 Å in radius and having lattice constants differing from the bulk value in 2%-0.2%. [See, ARPLAP 0066-426X, ()] 10.1146/annurev.pc.46.100195.003115; In these ultrasmall structures the effective mass approach still provides a good description of the electron motion through the lattice [See, Phys. Rev. Lett. PRLTAO 0031-9007 59, 1140 (1987)] 10.1103/PhysRevLett.59.1140;, J. Phys.: Condens. Matter JCOMEL 0953-8984 10, 1349 (1998) calculated the ground-state energy of excitons confined in spherical quantum dots, obtaining a good agreement for 5-40 Å radius with experimental data of CdS, CdSe, and CdTe crystallites. 10.1088/0953-8984/10/6/ 017
-
The chemical techniques allow for the preparation of high crystalline quantum dots in sizes ranging at 10-30 Å in radius and having lattice constants differing from the bulk value in 2%-0.2%. [See S. H. Tolbert and A. P. Alivisatos, Annu. Rev. Phys. Chem. ARPLAP 0066-426X 46, 595 (1995)] 10.1146/annurev.pc.46.100195.003115; In these ultrasmall structures the effective mass approach still provides a good description of the electron motion through the lattice [See G. W. Bryant, Phys. Rev. Lett. PRLTAO 0031-9007 59, 1140 (1987)] 10.1103/PhysRevLett.59.1140; J. L. Marin, R. Riera, and S. A. Cruz, J. Phys.: Condens. Matter JCOMEL 0953-8984 10, 1349 (1998) calculated the ground-state energy of excitons confined in spherical quantum dots, obtaining a good agreement for 5-40 Å radius with experimental data of CdS, CdSe, and CdTe crystallites. 10.1088/0953-8984/10/6/017
-
(1995)
Annu. Rev. Phys. Chem.
, vol.46
, pp. 595
-
-
Tolbert, S.H.1
Alivisatos, A.P.2
Bryant, G.W.3
Marin, J.L.4
Riera, R.5
Cruz, S.A.6
-
24
-
-
0000249126
-
-
PRBMDO 0163-1829,. 10.1103/PhysRevB.38.8142
-
L. Bányai, Y. Z. Hu, M. Lindberg, and S. W. Koch, Phys. Rev. B PRBMDO 0163-1829 38, 8142 (1988). 10.1103/PhysRevB.38.8142
-
(1988)
Phys. Rev. B
, vol.38
, pp. 8142
-
-
Bányai, L.1
Hu, Y.Z.2
Lindberg, M.3
Koch, S.W.4
-
25
-
-
0000721790
-
-
PRBMDO 0163-1829,. 10.1103/PhysRevB.39.8022
-
L. Bányai, Phys. Rev. B PRBMDO 0163-1829 39, 8022 (1989). 10.1103/PhysRevB.39.8022
-
(1989)
Phys. Rev. B
, vol.39
, pp. 8022
-
-
Bányai, L.1
-
27
-
-
0004139504
-
-
(St. John's University, New York).
-
E. Butkov, Mathematical Physics (St. John's University, New York, 1966).
-
(1966)
Mathematical Physics
-
-
Butkov, E.1
-
29
-
-
28644450151
-
-
(Institute of Materials Chemistry, TU Vienna).
-
P. Blaha, K. Schwarz, G. Madsen, D. K. Vasnicka, and J. Luitz, WIEN2K User's Guide (Institute of Materials Chemistry, TU Vienna, 2001).
-
(2001)
WIEN2K User's Guide
-
-
Blaha, P.1
Schwarz, K.2
Madsen, G.3
Vasnicka, D.K.4
Luitz, J.5
-
30
-
-
33744691386
-
-
PRLTAO 0031-9007,. 10.1103/PhysRevLett.45.566
-
D. M. Ceperley and B. I. Alder, Phys. Rev. Lett. PRLTAO 0031-9007 45, 566 (1980). 10.1103/PhysRevLett.45.566
-
(1980)
Phys. Rev. Lett.
, vol.45
, pp. 566
-
-
Ceperley, D.M.1
Alder, B.I.2
-
31
-
-
0001495657
-
-
(Springer, New York);, J. Appl. Phys. JAPIAU 0021-8979, (1997) 10.1063/1.366114; The transformation of elastic parameters from zinc-blende phase to wurtzite phase may be performed by using the Martin transformation [, Phys. Rev. B PRBMDO 0163-1829 6, 4546 (1972)] 10.1103/PhysRevB.6.4546; On the other hand, it is possible to perform a homogeneous strain transformation path from the wurtzite structure to the rocksalt one [, Phys. Rev. Lett. PRLTAO 0031-9007 86, 91 (2001]. 10.1103/PhysRevLett.86.91
-
P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, New York, 1996); A. F. Wright, J. Appl. Phys. JAPIAU 0021-8979 82, 2833 (1997) 10.1063/1.366114; The transformation of elastic parameters from zinc-blende phase to wurtzite phase may be performed by using the Martin transformation [R. M. Martin, Phys. Rev. B PRBMDO 0163-1829 6, 4546 (1972)] 10.1103/PhysRevB.6.4546; On the other hand, it is possible to perform a homogeneous strain transformation path from the wurtzite structure to the rocksalt one [S. Limpijumnong and W. R. L. Lambrecht, Phys. Rev. Lett. PRLTAO 0031-9007 86, 91 (2001]. 10.1103/PhysRevLett.86.91
-
(1996)
Fundamentals of Semiconductors: Physics and Materials Properties
, vol.82
, pp. 2833
-
-
Yu, P.Y.1
Cardona, M.2
Wright, A.F.3
Martin, R.M.4
Limpijumnong, S.5
Lambrecht, W.R.L.6
-
33
-
-
84974126965
-
-
This behavior could be analogous to the one that occurs when one makes a hole in a sheet of fluid: holes made in thin sheets of fluid in which surface tension forces predominate will open out if they are initially large in relation to the thickness of the sheet; but small holes will close u[See, JFLSA7 0022-1120, (]. (Below a certain diameter, the hole shrinks instead of expanding. Analogously, the nanoparticle would be a "hole" in the organic medium that would be compressed or tensioned depending on its diameter.). 10.1017/S0022112073002375
-
This behavior could be analogous to the one that occurs when one makes a hole in a sheet of fluid: holes made in thin sheets of fluid in which surface tension forces predominate will open out if they are initially large in relation to the thickness of the sheet; but small holes will close up [See G. I. Taylor and D. M. Michael, J. Fluid Mech. JFLSA7 0022-1120 58, 625 (1973]. (Below a certain diameter, the hole shrinks instead of expanding. Analogously, the nanoparticle would be a "hole" in the organic medium that would be compressed or tensioned depending on its diameter.). 10.1017/S0022112073002375
-
(1973)
J. Fluid Mech.
, vol.58
, pp. 625
-
-
Taylor, G.I.1
Michael, D.M.2
|