메뉴 건너뛰기




Volumn 57, Issue 1, 2010, Pages 33-44

Neighborhood search heuristics for selecting hierarchically well-formulated subsets in polynomial regression

Author keywords

Polynomial regression; Subset regression; Tabu search; Variable neighborhood search

Indexed keywords

COMPUTATION TIME; DATA SETS; HEURISTIC PROCEDURES; MULTIPLE REGRESSIONS; NEIGHBORHOOD SEARCH; POLYNOMIAL REGRESSION; REGRESSION PARAMETERS; SIMULATION STUDIES; SUBSET SELECTION; SYNTHETIC DATASETS; VARIABLE NEIGHBORHOOD SEARCH;

EID: 75149194432     PISSN: 0894069X     EISSN: 15206750     Source Type: Journal    
DOI: 10.1002/nav.20380     Document Type: Article
Times cited : (8)

References (37)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical identification model
    • H. Aikake, A new look at the statistical identification model, IEEE Trans Auto Control 19 (1974), 716-723.
    • (1974) IEEE Trans Auto Control , vol.19 , pp. 716-723
    • Aikake, H.1
  • 2
    • 0022107824 scopus 로고
    • Penalty calculations and branching rules in a LAV best subset procedure
    • R.D. Armstrong and P.O. Beck, Penalty calculations and branching rules in a LAV best subset procedure, Naval Res Log Q 32 (1985), 407-415.
    • (1985) Naval Res Log Q , vol.32 , pp. 407-415
    • Armstrong, R.D.1    Beck, P.O.2
  • 3
    • 0014184207 scopus 로고
    • The discarding of variables in multivariate analysis
    • E.M.L. Beale, M.G. Kendall, and D.W. Mann, The discarding of variables in multivariate analysis, Biometrika 54 (1967), 357-366.
    • (1967) Biometrika , vol.54 , pp. 357-366
    • Beale, E.M.L.1    Kendall, M.G.2    Mann, D.W.3
  • 4
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • L. Breiman, Better subset regression using the nonnegative garrote, Technometrics 37 (1995), 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 6
    • 69249136685 scopus 로고    scopus 로고
    • An exact algorithm for hierarchically well-formulated subsets in second-order polynomial regression
    • M.J. Brusco, D. Steinley, and J.D. Cradit, An exact algorithm for hierarchically well-formulated subsets in second-order polynomial regression, Technometrics 51 (2009), 306-315.
    • (2009) Technometrics , vol.51 , pp. 306-315
    • Brusco, M.J.1    Steinley, D.2    Cradit, J.D.3
  • 7
    • 0031270538 scopus 로고    scopus 로고
    • A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing
    • H. Chipman, M. Hamada, and C.F.J. Wu, A Bayesian variabl-selection approach for analyzing designed experiments with complex aliasing, Technometrics 39 (1997), 372-381.
    • (1997) Technometrics , vol.39 , pp. 372-381
    • Chipman, H.1    Hamada, M.2    Wu, C.F.J.3
  • 8
    • 0003168061 scopus 로고
    • Exploring partial residual plots
    • R. Cook, Exploring partial residual plots, Technometrics 35 (1993), 351-362.
    • (1993) Technometrics , vol.35 , pp. 351-362
    • Cook, R.1
  • 9
    • 0005693092 scopus 로고    scopus 로고
    • Tabu search model selection in multiple regression analysis
    • Z. Drezner and G.A. Marcoulides, Tabu search model selection in multiple regression analysis, Commun Stat Simul Comp 28 (1999), 349-367.
    • (1999) Commun Stat Simul Comp , vol.28 , pp. 349-367
    • Drezner, Z.1    Marcoulides, G.A.2
  • 11
    • 39449110437 scopus 로고    scopus 로고
    • Using hierarchical probability models to evaluate robust parameter design methods
    • D.D. Frey and X. Li, Using hierarchical probability models to evaluate robust parameter design methods, J Qual Tech 40 (2008), 59-77.
    • (2008) J Qual Tech , vol.40 , pp. 59-77
    • Frey, D.D.1    Li, X.2
  • 12
    • 0024607448 scopus 로고
    • Flexible parsimonious smoothing and additive modeling (with discussion)
    • J. Friedman and B. Silverman, Flexible parsimonious smoothing and additive modeling (with discussion), Technometrics 31 (1989), 3-40.
    • (1989) Technometrics , vol.31 , pp. 3-40
    • Friedman, J.1    Silverman, B.2
  • 13
    • 0016128505 scopus 로고
    • Regression by leaps and bounds
    • G.M. Furnival and R.W. Wilson, Regression by leaps and bounds, Technometrics 16 (1974), 499-512.
    • (1974) Technometrics , vol.16 , pp. 499-512
    • Furnival, G.M.1    Wilson, R.W.2
  • 14
    • 33645577251 scopus 로고    scopus 로고
    • Branch-and-bound algorithms for computing the best-subset regression models
    • C. Gatu and E.J. Kontoghiorghes, Branch-and-bound algorithms for computing the best-subset regression models, J Comp Graph Stat 15 (2006), 139-156.
    • (2006) J Comp Graph Stat , vol.15 , pp. 139-156
    • Gatu, C.1    Kontoghiorghes, E.J.2
  • 17
    • 0002703977 scopus 로고
    • Linear transformations of polynomial regression models
    • G.L. Griepentrog, J.M. Ryan, and L.D. Smith, Linear transformations of polynomial regression models, Am Stat 36 (1982), 171-174.
    • (1982) Am Stat , vol.36 , pp. 171-174
    • Griepentrog, G.L.1    Ryan, J.M.2    Smith, L.D.3
  • 18
    • 12344307797 scopus 로고    scopus 로고
    • Glover F.W. and Kochenberger G.A. (Editors), Kluwer, Norwell, Massachusetts
    • Hansen P. and N. Mladenović, "Variable neighborhood search," Glover F.W. and Kochenberger G.A. (Editors), Kluwer, Norwell, Massachusetts, 2003, pp. 145-184.
    • (2003) Variable Neighborhood Search , pp. 145-184
    • Hansen, P.1    Mladenović, N.2
  • 21
    • 84946633097 scopus 로고
    • Selection of the best subset in regression analysis
    • R.R. Hocking and R.N. Leslie, Selection of the best subset in regression analysis, Technometrics 9 (1967), 531-540.
    • (1967) Technometrics , vol.9 , pp. 531-540
    • Hocking, R.R.1    Leslie, R.N.2
  • 22
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983), 671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 23
    • 84952133131 scopus 로고
    • Computational efficiency in the selection of regression variables
    • L.R. LaMotte and R.R. Hocking, Computational efficiency in the selection of regression variables, Technometrics 12 (1970), 83-93.
    • (1970) Technometrics , vol.12 , pp. 83-93
    • LaMotte, L.R.1    Hocking, R.R.2
  • 24
    • 75149150415 scopus 로고    scopus 로고
    • MathWorks, Inc., The Math-Works, Inc, Natick, MA
    • MathWorks, Inc., Using MATLAB (Version 7), The Math-Works, Inc, Natick, MA, 2005.
    • (2005) Using MATLAB (Version 7)
  • 26
    • 0031281221 scopus 로고    scopus 로고
    • Variable neighborhood search
    • N. Mladenović and P. Hansen, Variable neighborhood search, Comp Oper Res 24 (1997), 1097-1100.
    • (1997) Comp Oper Res , vol.24 , pp. 1097-1100
    • Mladenović, N.1    Hansen, P.2
  • 27
    • 0001007995 scopus 로고    scopus 로고
    • Functional marginality and response-surface fitting
    • J.A. Nelder, Functional marginality and response-surface fitting, J Appl Stat 27 (2000), 109-112.
    • (2000) J Appl Stat , vol.27 , pp. 109-112
    • Nelder, J.A.1
  • 28
    • 9744246868 scopus 로고    scopus 로고
    • Design of follow-up experiments for improving model discrimination and parameter estimation
    • S.H. Ng and S.E. Chick, Design of follow-up experiments for improving model discrimination and parameter estimation, Naval Res Log 51 (2004), 1129-1148.
    • (2004) Naval Res Log , vol.51 , pp. 1129-1148
    • Ng, S.H.1    Chick, S.E.2
  • 29
    • 22544471551 scopus 로고    scopus 로고
    • Fraction of design space plots for examining model robustness
    • A. Ozol-Godfrey, C.M. Anderson-Cook, and D.C. Montgomery, Fraction of design space plots for examining model robustness, J Qual Tech 37 (2005), 223-235.
    • (2005) J Qual Tech , vol.37 , pp. 223-235
    • Ozol-Godfrey, A.1    Anderson-Cook, C.M.2    Montgomery, D.C.3
  • 30
    • 0038136330 scopus 로고
    • Hierarchical variable selection in polynomial regression models
    • J.L. Peixoto, Hierarchical variable selection in polynomial regression models, Am Stat 41 (1987), 311-313.
    • (1987) Am Stat , vol.41 , pp. 311-313
    • Peixoto, J.L.1
  • 31
    • 34250890601 scopus 로고
    • A property of well-formulated polynomial regression models
    • J.L. Peixoto, A property of well-formulated polynomial regression models, Am Stat 44 (1990), 26-30.
    • (1990) Am Stat , vol.44 , pp. 26-30
    • Peixoto, J.L.1
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz, Estimating the dimension of a model, Ann Stat 6 (1978), 461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 33
    • 0002388498 scopus 로고
    • Algorithm AS 268, All possible subset regressions using the QR decomposition
    • D.M. Smith, Algorithm AS 268, All possible subset regressions using the QR decomposition, Appl Stat 40 (1991), 502-513.
    • (1991) Appl Stat , vol.40 , pp. 502-513
    • Smith, D.M.1
  • 34
    • 0001912153 scopus 로고
    • Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection
    • J.M. Sutter and J.H. Kalivas, Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection, Microchem J 47 (1993), 60-66.
    • (1993) Microchem J , vol.47 , pp. 60-66
    • Sutter, J.M.1    Kalivas, J.H.2
  • 35
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J R Stat Soc B 58 (1996), 267-288.
    • (1996) J R Stat Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 36
    • 36849023833 scopus 로고    scopus 로고
    • An efficient variable selection approach for analyzing designed experiments
    • M. Yuan, V.R. Joseph, and Y. Lin, An efficient variable selection approach for analyzing designed experiments, Technometrics 49 (2007), 430-439.
    • (2007) Technometrics , vol.49 , pp. 430-439
    • Yuan, M.1    Joseph, V.R.2    Lin, Y.3
  • 37
    • 33845241081 scopus 로고    scopus 로고
    • Darwinian evolution in parallel universes: A parallel genetic algorithm for variable selection
    • M. Zhu and H.A. Chipman, Darwinian evolution in parallel universes: A parallel genetic algorithm for variable selection, Technometrics 48 (2006), 491-502.
    • (2006) Technometrics , vol.48 , pp. 491-502
    • Zhu, M.1    Chipman, H.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.