-
5
-
-
0002685093
-
-
(d)Griffin, R. W.; Gass, J. D.; Berwich, M. A.; Shulman, R. S. J. Org. Chem. 1964, 29, 2109-2116.
-
(1964)
J. Org. Chem
, vol.29
, pp. 2109-2116
-
-
Griffin, R.W.1
Gass, J.D.2
Berwich, M.A.3
Shulman, R.S.4
-
7
-
-
33947457384
-
-
(a) Koo, J. J. Am. Chem. Soc. 1953, 75, 1891-1895.
-
(1953)
J. Am. Chem. Soc
, vol.75
, pp. 1891-1895
-
-
Koo, J.1
-
8
-
-
74949139187
-
-
Koo, J.Organic Syntheses; John Wiley & Sons: New York, 1973; Collect. V, pp 550-551.
-
(b) Koo, J.Organic Syntheses; John Wiley & Sons: New York, 1973; Collect. Vol. V, pp 550-551.
-
-
-
-
11
-
-
33746730435
-
-
Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Jung, W. H.; Yang, S. D.; Kim, S. J.; Woo, J. R.; Lee, J. H.; Cheon, H. G.; Kim, S. S. J. Med. Chem. 2006, 49, 4781-4784.
-
(2006)
J. Med. Chem
, vol.49
, pp. 4781-4784
-
-
Ahn, J.H.1
Shin, M.S.2
Jung, S.H.3
Kang, S.K.4
Kim, K.R.5
Rhee, S.D.6
Jung, W.H.7
Yang, S.D.8
Kim, S.J.9
Woo, J.R.10
Lee, J.H.11
Cheon, H.G.12
Kim, S.S.13
-
13
-
-
33947294252
-
-
Olah, G. A.; Ku, A. T.; Sommer, J. J. Org. Chem. 1970, 35, 2159-2164.
-
(1970)
J. Org. Chem
, vol.35
, pp. 2159-2164
-
-
Olah, G.A.1
Ku, A.T.2
Sommer, J.3
-
15
-
-
34447319070
-
-
Bruck, D.; Dagan, A.; Rabinovitz, M. Tetrahedron Lett. 1978, 19, 1791-1794.
-
(1978)
Tetrahedron Lett
, vol.19
, pp. 1791-1794
-
-
Bruck, D.1
Dagan, A.2
Rabinovitz, M.3
-
16
-
-
2942628181
-
-
(a) Klumpp, D. A.; Rendy, R.; Zhang, Y.; Gomez, A.; McElrea, A. Org. Lett. 2004, 6, 1789-1792.
-
(2004)
Org. Lett
, vol.6
, pp. 1789-1792
-
-
Klumpp, D.A.1
Rendy, R.2
Zhang, Y.3
Gomez, A.4
McElrea, A.5
-
17
-
-
36849023371
-
-
(b) Kumar, K.; Sai, S.; Gilbert, T. M.; Klumpp, D. A. J. Org. Chem. 2007, 72, 9761-9764.
-
(2007)
J. Org. Chem
, vol.72
, pp. 9761-9764
-
-
Kumar, K.1
Sai, S.2
Gilbert, T.M.3
Klumpp, D.A.4
-
21
-
-
0001112502
-
-
(c) Lammertsma, K.; Schleyer, P. v. R.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1989, 101, 1313-35.
-
(1989)
Angew. Chem., Int. Ed. Engl
, vol.101
, pp. 1313-1335
-
-
Lammertsma, K.1
Schleyer, P.V.R.2
Schwarz, H.3
-
22
-
-
33745363641
-
-
Mayr, H.; Ofial, A. R. Angew. Chem., Int. Ed. 2006, 45, 1844-1854.
-
(2006)
Angew. Chem., Int. Ed
, vol.45
, pp. 1844-1854
-
-
Mayr, H.1
Ofial, A.R.2
-
23
-
-
74949105379
-
-
With poly(phosphoric acid, PPA) catalyst, the ester functionality remained in the indene products from the reaction of arylacetoacetates see ref 3
-
With poly(phosphoric acid) (PPA) catalyst, the ester functionality remained in the indene products from the reaction of arylacetoacetates (see ref 3).
-
-
-
-
24
-
-
44949233806
-
-
Nakamura, S.; Sugimoto, H.; Ohwada, T. J. Org. Chem. 2008, 73, 4219-4224.
-
(2008)
J. Org. Chem
, vol.73
, pp. 4219-4224
-
-
Nakamura, S.1
Sugimoto, H.2
Ohwada, T.3
-
25
-
-
84992601286
-
-
Olah, G. A.; Hartz, N.; Rasul, G.; Burrichter, A.; Prakash, G. K. S. J. Am. Chem. Soc. 1995, 117, 6421-6427.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 6421-6427
-
-
Olah, G.A.1
Hartz, N.2
Rasul, G.3
Burrichter, A.4
Prakash, G.K.S.5
-
26
-
-
74949107096
-
-
This experiment used an amount of TFSA similar to that in the cases of entries 3-6 in Table 1. The ratios of 2a-H and 5a (they correspond to 2a and 3a after aqueous workup) in Figure 1 are consistent with those of 2a and 3a observed in entries 3-6 in Table 1
-
This experiment used an amount of TFSA similar to that in the cases of entries 3-6 in Table 1. The ratios of 2a-H and 5a (they correspond to 2a and 3a after aqueous workup) in Figure 1 are consistent with those of 2a and 3a observed in entries 3-6 in Table 1.
-
-
-
-
27
-
-
74949120300
-
-
In TFSA, 1a formed protonated keto (1a-H) and enol (1a′-H) forms. Similar enol formation in the acid was also observed in the case of 1d (see Scheme 5). In Figure 1, we show the summation of 1a-H and 1a′-H as the amount of 1a for the sake of simplicity.
-
In TFSA, 1a formed protonated keto (1a-H) and enol (1a′-H) forms. Similar enol formation in the acid was also observed in the case of 1d (see Scheme 5). In Figure 1, we show the summation of 1a-H and 1a′-H as the amount of 1a for the sake of simplicity.
-
-
-
-
28
-
-
74949123020
-
-
1H NMR integration). Similarly, in TFSA (50 equiv), methyl cinnamate afforded the carboxylic acid in 31% yield (recovery 54%, isolation yield) after 40 h. The saturated methyl ester 16a did not yield the corresponding carboxylic acid in TFSA at-6 °C.
-
1H NMR integration). Similarly, in TFSA (50 equiv), methyl cinnamate afforded the carboxylic acid in 31% yield (recovery 54%, isolation yield) after 40 h. The saturated methyl ester 16a did not yield the corresponding carboxylic acid in TFSA at-6 °C.
-
-
-
-
29
-
-
0032499077
-
-
(a) Nakamura, E.; Sakata, G.; Kubota, K. Tetrahedron Lett. 1998, 39, 2157-2158
-
(1998)
Tetrahedron Lett
, vol.39
, pp. 2157-2158
-
-
Nakamura, E.1
Sakata, G.2
Kubota, K.3
-
31
-
-
0026010517
-
-
Saito, S.; Saito, S.; Ohwada, T.; Shudo, K. Chem. Pharm. Bull. 1991, 39, 2718-2720.
-
(1991)
Chem. Pharm. Bull
, vol.39
, pp. 2718-2720
-
-
Saito, S.1
Saito, S.2
Ohwada, T.3
Shudo, K.4
-
32
-
-
74949084594
-
-
The trends of the acidity dependence in the presence of DCM were consistent with those in the absence of DCM see Table 3 and Table S1 in the Supporting Information
-
The trends of the acidity dependence in the presence of DCM were consistent with those in the absence of DCM (see Table 3 and Table S1 in the Supporting Information).
-
-
-
-
33
-
-
74949111869
-
-
BH + values of the carbonyl oxygen atoms of conjugate ketones (e.g., benzalacetophenone, -4.3 to -5.7) and conjugate esters (e.g., trans-cinnamic acid, -6.2) see ref 25a and
-
BH + values of the carbonyl oxygen atoms of conjugate ketones (e.g., benzalacetophenone, -4.3 to -5.7) and conjugate esters (e.g., trans-cinnamic acid, -6.2) (see ref 25a and
-
-
-
-
35
-
-
3342936941
-
-
Noyce, D. S.;King, P. A, Kirby, F. B, Reed, W. L. J. Am. Chem. Soc. 1962, 84, 1632-1635) are estimated to be as large as -6. Furthermore, in the enol forms of the arylacetoacetate 9d or 9d′ (Scheme 5, the olefin was substituted with an electron-donating hydroxyl group. Thus, the carbonyl oxygen atoms of 9d and 9d ′ were more basic than those of typical compounds. Therefore, in the acid range of H0, 8 to -14, practically complete O-protonation of the enol carbonyl group occurred, resulting in the generation of the monocation 10d (Scheme 5, which is resonance-stabilized. R-Methylated acetoacetates 1q, 1r, and 1s afforded the cyclized product in the acid (Table 2, though enolization is impossible. Therefore, we concluded that the enol form or its O-protonated form (such as 10d) of the acetoacetates 1 is in equilibrium with the (O-protonated) keto form Scheme 5
-
0 =-8 to -14, practically complete O-protonation of the enol carbonyl group occurred, resulting in the generation of the monocation 10d (Scheme 5), which is resonance-stabilized. R-Methylated acetoacetates 1q, 1r, and 1s afforded the cyclized product in the acid (Table 2), though enolization is impossible. Therefore, we concluded that the enol form or its O-protonated form (such as 10d) of the acetoacetates 1 is in equilibrium with the (O-protonated) keto form (Scheme 5).
-
-
-
-
37
-
-
74949093750
-
-
BH + values of the ketone 6a and ester 16a were estimated to be -8.5 and -8.5, respectively, in an acid-base titration experiment (see Figure 4 and Supporting Information Figure S5).
-
BH + values of the ketone 6a and ester 16a were estimated to be -8.5 and -8.5, respectively, in an acid-base titration experiment (see Figure 4 and Supporting Information Figure S5).
-
-
-
-
41
-
-
74949092393
-
-
The reported basicity of aliphatic ketones lies at around H 0, 7.2 and that of esters at H0, 6.8 see ref 25, Thus, the estimated basicity values of the ketone and ester carbonyl groups of 1d seem to be rather decreased. This is probably because the two carbonyl groups of the acetoacetate 1d mutually interact through the insulating carbon atom and attenuate the electron density through their electronwithdrawing inductive effects. This electron-withdrawing effect would be increased upon O-protonation of individual carbonyl oxygen atoms
-
0 =-6.8 (see ref 25). Thus, the estimated basicity values of the ketone and ester carbonyl groups of 1d seem to be rather decreased. This is probably because the two carbonyl groups of the acetoacetate 1d mutually interact through the insulating carbon atom and attenuate the electron density through their electronwithdrawing inductive effects. This electron-withdrawing effect would be increased upon O-protonation of individual carbonyl oxygen atoms.
-
-
-
-
42
-
-
74949095346
-
-
0 - 11.8 (Supporting Information Table S2).
-
0 - 11.8 (Supporting Information Table S2).
-
-
-
-
43
-
-
74949104758
-
-
The preference of the keto cyclization of 8 is consistent with the lower lying π* orbital of the ketone moiety as compared with the π* orbital of the ester moiety (see Figure 6).
-
The preference of the keto cyclization of 8 is consistent with the lower lying π* orbital of the ketone moiety as compared with the π* orbital of the ester moiety (see Figure 6).
-
-
-
-
45
-
-
33644593395
-
-
For monocations: a
-
For monocations: (a) Lucchini, V.; Modena, G.; Scorrano, G.; Tonellato, U. J. Am. Chem. Soc. 1977, 99, 3387-3392.
-
(1977)
J. Am. Chem. Soc
, vol.99
, pp. 3387-3392
-
-
Lucchini, V.1
Modena, G.2
Scorrano, G.3
Tonellato, U.4
-
46
-
-
0001542879
-
-
For dications
-
(b) Baigrie, L. M.;Cox, R. A.; Slebocka-Tilk, H.; Tencer, M.; Tidwell, T. T. J. Am. Chem. Soc. 1985, 107, 3640-3645. For dications:
-
(1985)
J. Am. Chem. Soc
, vol.107
, pp. 3640-3645
-
-
Baigrie, L.M.1
Cox, R.A.2
Slebocka-Tilk, H.3
Tencer, M.4
Tidwell, T.T.5
-
47
-
-
0000528149
-
-
(c) Satio, S.; Sato, Y.;Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1994, 116, 2312-2317.
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 2312-2317
-
-
Satio, S.1
Sato, Y.2
Ohwada, T.3
Shudo, K.4
-
48
-
-
0001045880
-
-
(d)Sato, Y.; Yato, M.; Ohwada, T.; Saito, S.; Shudo, K. J. Am. Chem. Soc. 1995, 117, 3037-3043.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 3037-3043
-
-
Sato, Y.1
Yato, M.2
Ohwada, T.3
Saito, S.4
Shudo, K.5
-
49
-
-
0030816069
-
-
(e) Suzuki, T.; Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1997, 119, 6774-6780.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 6774-6780
-
-
Suzuki, T.1
Ohwada, T.2
Shudo, K.3
-
50
-
-
0032550682
-
-
(f) Ohwada, T.; Suzuki, T.; Shudo, K. J. Am. Chem. Soc. 1998, 120, 4629-4637.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 4629-4637
-
-
Ohwada, T.1
Suzuki, T.2
Shudo, K.3
-
51
-
-
0033593374
-
-
(g)Yokoyama, A.; Ohwada, T.; Shudo, K. J. Org. Chem. 1999, 64, 611-617.
-
(1999)
J. Org. Chem
, vol.64
, pp. 611-617
-
-
Yokoyama, A.1
Ohwada, T.2
Shudo, K.3
-
52
-
-
0035965718
-
-
(h) Olah, G. A.; Mathew, T.; Marinez, E. R.; Esteves, P. M.; Etzkorn, M.; Rasul, G.; Prakash, G. K. S. J. Am. Chem. Soc. 2001, 125, 11556-11561.
-
(2001)
J. Am. Chem. Soc
, vol.125
, pp. 11556-11561
-
-
Olah, G.A.1
Mathew, T.2
Marinez, E.R.3
Esteves, P.M.4
Etzkorn, M.5
Rasul, G.6
Prakash, G.K.S.7
-
53
-
-
74949106693
-
-
In the case of six-membered ring cyclization reaction, the O 1,O3-diprotonated dication 8k contributed significantly to the cyclization, because the cyclization reaction proceeded at H0, 9.7 (Table 3, entry 9, where the O1,O 3-diprotonated dication 8k would be in equilibrium with monoprotonated cations 7k and 7k′ (Scheme 5, In the high acidity region (stronger than H0, 11.8, a similar intervention of the corresponding tricationic species 11k can also be considered because the basicity of the acetoacetate of 1k is similar to that of 1a see Figure 2, Therefore, in the six-membered ring cyclization reaction, the dication 8k would participate significantly in the cyclization, while the tricationic species 11k is postulated to accelerate the cyclization in the strong acid region
-
0 =-11.8), a similar intervention of the corresponding tricationic species 11k can also be considered because the basicity of the acetoacetate of 1k is similar to that of 1a (see Figure 2). Therefore, in the six-membered ring cyclization reaction, the dication 8k would participate significantly in the cyclization, while the tricationic species 11k is postulated to accelerate the cyclization in the strong acid region.
-
-
-
-
54
-
-
0001217756
-
-
Ammann, C.; Meier, P.; Merbach, A. E. J. Magn. Reson. 1982, 46, 319-321.
-
(1982)
J. Magn. Reson
, vol.46
, pp. 319-321
-
-
Ammann, C.1
Meier, P.2
Merbach, A.E.3
-
55
-
-
33847801637
-
-
(a) Olah, G. A.; Germain, A.; Lin, H. C.; Forsyth, D. A. J. Am. Chem. Soc. 1975, 97, 2928-2929.
-
(1975)
J. Am. Chem. Soc
, vol.97
, pp. 2928-2929
-
-
Olah, G.A.1
Germain, A.2
Lin, H.C.3
Forsyth, D.A.4
-
56
-
-
0034622884
-
-
(b) Hwang, J. P.; Prakash, G. K. S.; Olah, G. A. Tetrahedron 2000, 56, 7199-7203.
-
(2000)
Tetrahedron
, vol.56
, pp. 7199-7203
-
-
Hwang, J.P.1
Prakash, G.K.S.2
Olah, G.A.3
-
58
-
-
0038626673
-
-
Gaussian, Inc, Pittsburgh, PA
-
Frisch, M. J.; et al. Gaussian 03; Gaussian, Inc.: Pittsburgh, PA, 2003.
-
(2003)
Gaussian 03
-
-
Frisch, M.J.1
-
59
-
-
0011083499
-
-
(a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
-
(1988)
Chem. Rev
, vol.88
, pp. 899
-
-
Reed, A.E.1
Curtiss, L.A.2
Weinhold, F.3
-
60
-
-
74949130816
-
-
NBO version 3
-
(b) NBO version 3.
-
-
-
|