메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1047-1055

Practical lessons of data mining at Yahoo!

Author keywords

Advertising and optimization; Classification and clustering; Industrial practice and experience; Large scale statistical modeling

Indexed keywords

BUSINESS ENVIRONMENTS; CLASSIFICATION AND CLUSTERING; COMMERCIAL APPLICATIONS; ILLUSTRATIVE EXAMPLES; INDUSTRIAL PRACTICES; LARGE-SCALE STATISTICAL MODELING; STATISTICAL MODELING; SUCCESS FACTORS;

EID: 74549220810     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1645953.1646087     Document Type: Conference Paper
Times cited : (2)

References (30)
  • 1
    • 74549133908 scopus 로고    scopus 로고
    • http://hadoop.apache.org/.
  • 2
    • 70350627764 scopus 로고    scopus 로고
    • Determining ad targeting information and/or ad creative information using past search queries.
    • U.S. Patent 10/813,925, filed: March 31, 2004
    • S. Agarwal, P. Renaker, and A. Smith. Determining ad targeting information and/or ad creative information using past search queries. U.S. Patent 10/813,925, filed: March 31, 2004.
    • Agarwal, S.1    Renaker, P.2    Smith, A.3
  • 4
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netix prize challenge
    • R. M. Bell and Y. Koren. Lessons from the Netix prize challenge. ACM SIGKDD Explorations, 9(2):75-79, 2007.
    • (2007) ACM SIGKDD Explorations , vol.9 , Issue.2 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 10
    • 70350656469 scopus 로고    scopus 로고
    • Large-scale behavioral targeting for advertising over a network.
    • U.S. Patent Application 12/351,749, led: January 9, 2009
    • Y. Chen, D. Pavlov, P. Berkhin, and J. F. Canny. Large-scale behavioral targeting for advertising over a network. U.S. Patent Application 12/351,749, led: January 9, 2009.
    • Chen, Y.1    Pavlov, D.2    Berkhin, P.3    Canny, J.F.4
  • 12
    • 74549117047 scopus 로고    scopus 로고
    • Click through rate prediction using a probabilistic latent variable model.
    • U.S. Patent Application 12/474,668, filed: May 29, 2009
    • Y. Chen, D. Pavlov, J. F. Canny, and E. Manavoglu. Click through rate prediction using a probabilistic latent variable model. U.S. Patent Application 12/474,668, filed: May 29, 2009.
    • Chen, Y.1    Pavlov, D.2    Canny, J.F.3    Manavoglu, E.4
  • 14
    • 70350636036 scopus 로고    scopus 로고
    • Model for generating user profiles in a behavioral targeting system.
    • U.S. Patent 11/394,374, led: Mar 29, 2006
    • C. Y. Chung, J. M. Koran, L.-J. Lin, and H. Yin. Model for generating user profiles in a behavioral targeting system. U.S. Patent 11/394,374, led: Mar 29, 2006.
    • Chung, C.Y.1    Koran, J.M.2    Lin, L.-J.3    Yin, H.4
  • 15
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 16
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Communications of the ACM, 51(1):107-113, 2008.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 23
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative filtering. Internet Computing, 7(1):76-80, 2003.
    • (2003) Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 27
    • 7444228338 scopus 로고    scopus 로고
    • The CRISP-DM model: The new blueprint for data mining
    • C. Shearer. The CRISP-DM model: the new blueprint for data mining. Journal of Data Warehousing, 5:13-22, 2000.
    • (2000) Journal of Data Warehousing , vol.5 , pp. 13-22
    • Shearer, C.1
  • 28
    • 4243066295 scopus 로고    scopus 로고
    • Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
    • D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385-463, 2004.
    • (2004) Journal of the ACM , vol.51 , Issue.3 , pp. 385-463
    • Spielman, D.A.1    Teng, S.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.