메뉴 건너뛰기




Volumn 3060, Issue , 2014, Pages 485-492

Exploring case-based Bayesian networks and Bayesian multi-nets for classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DATA HANDLING; SEMANTICS;

EID: 7444238336     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-24840-8_42     Document Type: Conference Paper
Times cited : (5)

References (8)
  • 5
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C.K., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transaction on Information Theory 14 (1968) 462-467
    • (1968) IEEE Transaction on Information Theory , vol.14 , pp. 462-467
    • Chow, C.K.1    Liu, C.2
  • 6
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the mdl principle
    • Lam, W., Bacchus, F.: Learning bayesian belief networks: An approach based on the mdl principle. Computational Intelligence 10 (1994)
    • (1994) Computational Intelligence , vol.10
    • Lam, W.1    Bacchus, F.2
  • 8
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets
    • Huang, Z.: Extensions to the k-means algorithm for clustering large data sets. Data Mining and Knowledge Discovery 2 (1998) 283-304
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 283-304
    • Huang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.