메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1-237

Understanding complex datasets: Data mining with matrix decompositions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 74049123312     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9781584888338     Document Type: Book
Times cited : (120)

References (119)
  • 6
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • J.B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB, pages, Morgan Kaufmann
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J.B. Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann, 1994.
    • (1994) Proceedings of the 20Th International Conference on Very Large Data Bases , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 7
    • 0029214082 scopus 로고
    • Spectral partitioning: The more eigenvectors, the better
    • pages, June
    • C.J. Alpert and S.-Z. Yao. Spectral partitioning: The more eigenvectors, the better. In 32nd ACM/IEEE Design Automation Conference, pages 195–200, June 1995.
    • (1995) 32Nd ACM/IEEE Design Automation Conference , pp. 195-200
    • Alpert, C.J.1    Yao, S.-Z.2
  • 8
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • O. Alter, P.O. Brown, and D. Botstein. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Science, 97(18):10101–10106, 2000.
    • (2000) Proceedings of the National Academy of Science , vol.97 , Issue.18 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 12
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA, MIT Press
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems 14
    • Belkin, M.1    Niyogi, P.2
  • 13
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • M.W. Berry, S.T. Dumais, and G.W. O’Brien. Using linear algebra for intelligent information retrieval. SIAM Review, 37(4):573–595, 1995.
    • (1995) SIAM Review , vol.37 , Issue.4 , pp. 573-595
    • Berry, M.W.1    Dumais, S.T.2    O’Brien, G.W.3
  • 14
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • D.L. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4):325–344, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.L.1
  • 15
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • D. Haussler, editor, pages, Pittsburgh
    • B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, pages 144–152, Pittsburgh, 1992.
    • (1992) 5Th Annual ACM Workshop on COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 16
    • 67651164565 scopus 로고    scopus 로고
    • A random walks perspective on maximizing satisfaction and profit
    • M. Brand. A random walks perspective on maximizing satisfaction and profit. In SIAM International Conference on Data Mining, pages 12–19, 2005.
    • (2005) SIAM International Conference on Data Mining , pp. 12-19
    • Brand, M.1
  • 17
    • 0006001358 scopus 로고    scopus 로고
    • Technical Report 567, Department of Statistics, University of California, Berkeley, September
    • L. Breiman. Random forests–random features. Technical Report 567, Department of Statistics, University of California, Berkeley, September 1999.
    • (1999) Random forests–random Features
    • Breiman, L.1
  • 21
    • 33748361351 scopus 로고    scopus 로고
    • The $25,000,000,000 eigenvector: The linear algebra behind Google
    • K. Bryan and T. Leise. The $25,000,000,000 eigenvector: The linear algebra behind Google. SIAM Review, 48(3):569–581, 2006.
    • (2006) SIAM Review , vol.48 , Issue.3 , pp. 569-581
    • Bryan, K.1    Leise, T.2
  • 22
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121–167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 24
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition
    • J.D. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 35:283–319, 1970.
    • (1970) Psychometrika , vol.35 , pp. 283-319
    • Carroll, J.D.1    Chang, J.-J.2
  • 26
    • 0029543087 scopus 로고
    • A rank-one reduction formula and its applications to matrix factorizations
    • M.T. Chu, R.E. Funderlic, and G.H. Golub. A rank-one reduction formula and its applications to matrix factorizations. SIAM Review, 37:512–530, 1995.
    • (1995) SIAM Review , vol.37 , pp. 512-530
    • Chu, M.T.1    Funderlic, R.E.2    Golub, G.H.3
  • 35
    • 0035788930 scopus 로고    scopus 로고
    • A spectral method to separate disconnected and nearly-disconnected Web graph components
    • pages
    • C.H.Q. Ding, X. He, and H. Zha. A spectral method to separate disconnected and nearly-disconnected Web graph components. In KDD 2001, pages 275–280, 2001.
    • (2001) In KDD , pp. 275-280
    • Ding, C.H.Q.1    He, X.2    Zha, H.3
  • 45
    • 0032308232 scopus 로고    scopus 로고
    • Fast Monte-Carlo algorithms for finding low-rank approximations
    • pages
    • A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank approximations. In FOCS ’98, pages 370–378, 1998.
    • (1998) FOCS ’98 , pp. 370-378
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 49
    • 0032194637 scopus 로고    scopus 로고
    • Electrochemical mass transport in overburden: A new model to account for the formation of selective leach geochemical anomalies in glacial terrain
    • pages
    • S.M. Hamilton. Electrochemical mass transport in overburden: A new model to account for the formation of selective leach geochemical anomalies in glacial terrain. Journal of Geochemical Exploration, pages 155– 172, 1998.
    • (1998) Journal of Geochemical Exploration , pp. 155-172
    • Hamilton, S.M.1
  • 51
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis
    • R.A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 1970.
    • (1970) UCLA Working Papers in Phonetics , vol.16
    • Harshman, R.A.1
  • 52
    • 33846235190 scopus 로고    scopus 로고
    • Latent Semantic Analysis and Fiedler retrieval
    • B. Hendrickson. Latent Semantic Analysis and Fiedler retrieval. Linear Algebra and Applications, 421:345–355, 2007.
    • (2007) Linear Algebra and Applications , vol.421 , pp. 345-355
    • Hendrickson, B.1
  • 54
    • 0033114102 scopus 로고    scopus 로고
    • Feature extraction through LO-COCODE
    • S. Hochreiter and J. Schmidhuber. Feature extraction through LO-COCODE. Neural Computation, 11(3):679–714, 1999.
    • (1999) Neural Computation , vol.11 , Issue.3 , pp. 679-714
    • Hochreiter, S.1    Schmidhuber, J.2
  • 55
    • 0010323625 scopus 로고    scopus 로고
    • Lococode performs nonlinear ICA without knowing the number of sources
    • pages
    • S. Hochreiter and J. Schmidhuber. Lococode performs nonlinear ICA without knowing the number of sources. In Proceedings of the ICA’99, pages 149–154, 1999.
    • (1999) Proceedings of the ICA’99 , pp. 149-154
    • Hochreiter, S.1    Schmidhuber, J.2
  • 56
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P.O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning, 5:1457–1469, 2004.
    • (2004) Journal of Machine Learning , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 57
    • 0033730375 scopus 로고    scopus 로고
    • Two purposes for matrix factorization: A historical appraisal
    • L. Hubert, J. Meulman, and W. Heiser. Two purposes for matrix factorization: A historical appraisal. SIAM Review, 42(1):68–82, 2000.
    • (2000) SIAM Review , vol.42 , Issue.1 , pp. 68-82
    • Hubert, L.1    Meulman, J.2    Heiser, W.3
  • 58
    • 0000466122 scopus 로고    scopus 로고
    • Survey on independent component analysis
    • A. Hyvärinen. Survey on independent component analysis. Neural Computing Surveys, 2:94–128, 1999.
    • (1999) Neural Computing Surveys , vol.2 , pp. 94-128
    • Hyvärinen, A.1
  • 60
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5):411–430, 2000.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 61
    • 0014129195 scopus 로고
    • Hierarchical clustering schemes
    • S.C. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241– 254, 1967.
    • (1967) Psychometrika , vol.2 , pp. 241-254
    • Johnson, S.C.1
  • 63
    • 0004622494 scopus 로고    scopus 로고
    • A singularly valuable decomposition: The SVD of a matrix
    • January
    • D. Kalman. A singularly valuable decomposition: The SVD of a matrix. College Math Journal, 27(1), January 1996.
    • (1996) College Math Journal , vol.27 , Issue.1
    • Kalman, D.1
  • 67
    • 0033658378 scopus 로고    scopus 로고
    • Some procedures for displaying results from three-way methods
    • H.A.L. Kiers. Some procedures for displaying results from three-way methods. Journal of Chemometrics, 14:151–170, 2000.
    • (2000) Journal of Chemometrics , vol.14 , pp. 151-170
    • Kiers, H.A.L.1
  • 69
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5):604–632, 1999.
    • (1999) Journal of the ACM , vol.46 , Issue.5 , pp. 604-632
    • Kleinberg, J.M.1
  • 70
    • 0032183760 scopus 로고    scopus 로고
    • A semi-discrete matrix decomposition for latent semantic indexing in information retrieval
    • G. Kolda and D.P. O’Leary. A semi-discrete matrix decomposition for latent semantic indexing in information retrieval. ACM Transactions on Information Systems, 16:322–346, 1998.
    • (1998) ACM Transactions on Information Systems , vol.16 , pp. 322-346
    • Kolda, G.1    O’Leary, D.P.2
  • 74
    • 0013057488 scopus 로고    scopus 로고
    • Signal detection using ICA: Application to chat room topic spotting
    • December
    • T. Kolenda, L. Hansen, and J. Larsen. Signal detection using ICA: Application to chat room topic spotting. In Proceedings of ICA’2001, December 2001.
    • (2001) Proceedings of ICA’2001
    • Kolenda, T.1    Hansen, L.2    Larsen, J.3
  • 78
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788–791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 80
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • M.S. Lewicki and T.J. Sejnowski. Learning overcomplete representations. Neural Computation, 12(2):337–365, 2000.
    • (2000) Neural Computation , vol.12 , Issue.2 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 82
    • 66149096828 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, to appear.
    • Neural Computation, to Appear
    • Lin, C.-J.1
  • 83
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press
    • J.B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297. University of California Press, 1967.
    • (1967) Proceedings of 5Th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • Macqueen, J.B.1
  • 84
    • 0030126520 scopus 로고    scopus 로고
    • Criminal investigation systems: The growing dependence on advanced computer systems
    • April
    • V.A.J. Maller. Criminal investigation systems: The growing dependence on advanced computer systems. Computing and Control Engineering Journal, pages 93–100, April 1996.
    • (1996) Computing and Control Engineering Journal , pp. 93-100
    • Maller, V.A.J.1
  • 85
  • 91
    • 0003699334 scopus 로고
    • The Logic of Scientific Discovery
    • K. Popper. The Logic of Scientific Discovery. Hutchinson, London, 1959.
    • (1959) Hutchinson, London
    • Popper, K.1
  • 92
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 94
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their application to chess end games
    • Michalski, Carbonell, and Mitchell, editors, Morgan Kaufmann
    • J.R. Quinlan. Learning efficient classification procedures and their application to chess end games. In Michalski, Carbonell, and Mitchell, editors, Machine learning: An artificial intelligence approach. Morgan Kaufmann, 1993.
    • (1993) Machine Learning: An Artificial Intelligence Approach
    • Quinlan, J.R.1
  • 95
    • 33847702103 scopus 로고    scopus 로고
    • The principal component analysis of a graph and its relationships to spectral clustering
    • M. Saerens, F. Fouss, L. Yen, and P. Dupont. The principal component analysis of a graph and its relationships to spectral clustering. In ECML 2004, 2004.
    • (2004) In ECML , vol.2004
    • Saerens, M.1    Fouss, F.2    Yen, L.3    Dupont, P.4
  • 96
    • 3042788736 scopus 로고    scopus 로고
    • Application of dimensionality reduction in recommender systems – A case study
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender systems – A case study. In ACM WebKDD Workshop, 2000.
    • (2000) ACM Webkdd Workshop
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 101
    • 24944510071 scopus 로고    scopus 로고
    • Beyond keyword filtering for message and conversation detection
    • pages, Springer-Verlag Lecture Notes in Computer Science LNCS 3495, May
    • D.B. Skillicorn. Beyond keyword filtering for message and conversation detection. In IEEE International Conference on Intelligence and Security Informatics (ISI2005), pages 231–243. Springer-Verlag Lecture Notes in Computer Science LNCS 3495, May 2005.
    • (2005) In IEEE International Conference on Intelligence and Security Informatics (ISI2005) , pp. 231-243
    • Skillicorn, D.B.1
  • 105
    • 0347510452 scopus 로고    scopus 로고
    • High-performance singular value decomposition
    • Grossman, Kamath, Kumar, Kegelmeyer, and Namburu, editors, pages, Kluwer
    • D.B. Skillicorn and X. Yang. High-performance singular value decomposition. In Grossman, Kamath, Kumar, Kegelmeyer, and Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 401–424. Kluwer, 2001.
    • (2001) Data Mining for Scientific and Engineering Applications , pp. 401-424
    • Skillicorn, D.B.1    Yang, X.2
  • 106
    • 0032075375 scopus 로고    scopus 로고
    • A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralisation in arid environments
    • pages
    • B.W. Smee. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralisation in arid environments. Journal of Geochemical Exploration, pages 149–172, 1998.
    • (1998) Journal of Geochemical Exploration , pp. 149-172
    • Smee, B.W.1
  • 107
    • 33444458912 scopus 로고    scopus 로고
    • Theory behind the use of soil pH measurements as an inexpensive guide to buried mineralization, with examples
    • B.W. Smee. Theory behind the use of soil pH measurements as an inexpensive guide to buried mineralization, with examples. Explore, 118:1–19, 2003.
    • (2003) Explore , vol.118 , pp. 1-19
    • Smee, B.W.1
  • 111
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • L.R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279–311, 1966.
    • (1966) Psychometrika , vol.31 , pp. 279-311
    • Tucker, L.R.1
  • 112
    • 85055469795 scopus 로고    scopus 로고
    • What is Holmes 2. www.holmes2.com/holmes2/whatish2/, 2004.
    • (2004) What is Holmes 2
  • 114
    • 34547300830 scopus 로고    scopus 로고
    • A tutorial on spectral clustering. Technical Report 149, Max Plank Institute for
    • August
    • U. von Luxburg. A tutorial on spectral clustering. Technical Report 149, Max Plank Institute for Biological Cybernetics, August 2006.
    • (2006) Biological Cybernetics
    • Luxburg, U.1
  • 116
    • 85055577673 scopus 로고    scopus 로고
    • A comparison of PCA/ICA for data preprocessing in a geoscience application
    • pages, December
    • P. Wong, S. Choi, and Y. Niu. A comparison of PCA/ICA for data preprocessing in a geoscience application. In Proceedings of ICA, pages 278–283, December 2001.
    • (2001) In Proceedings of ICA , pp. 278-283
    • Wong, P.1    Choi, S.2    Niu, Y.3
  • 118
    • 33750328441 scopus 로고    scopus 로고
    • Automatic dimensionality selection from the scree plot via the use of profile likelihood
    • M. Zhu and A. Ghodsi. Automatic dimensionality selection from the scree plot via the use of profile likelihood. Computational Statistics and Data Analysis, 51(2):918–930, 2006.
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.2 , pp. 918-930
    • Zhu, M.1    Ghodsi, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.