메뉴 건너뛰기




Volumn 80, Issue 6, 2009, Pages

Evolutionary dynamics on networks of selectively neutral genotypes: Effects of topology and sequence stability

Author keywords

[No Author keywords available]

Indexed keywords

CONNECTED REGION; ENERGETIC STABILITY; EVOLUTIONARY DYNAMICS; GENOME SPACE; LARGER NETWORKS; MUTATION RATES; NEUTRAL NETWORK; NUMERICAL STUDIES; QUALITATIVE BEHAVIOR; REPLICATORS; SELECTIVE PRESSURE; SIMPLE NETWORKS; SMALL NETWORKS; TOPOLOGICAL PROPERTIES; TRANSIENT TIME;

EID: 73649091448     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.80.066112     Document Type: Article
Times cited : (37)

References (42)
  • 1
    • 0014421064 scopus 로고
    • 10.1038/217624a0
    • M. Kimura, Nature (London) 217, 624 (1968). 10.1038/217624a0
    • (1968) Nature (London) , vol.217 , pp. 624
    • Kimura, M.1
  • 2
    • 0034667684 scopus 로고    scopus 로고
    • 10.1002/1097-010X(20001015)288:3<242::AID-JEZ5>3.0.CO;2-O
    • L. W. Ancel and W. Fontana, J. Exp. Zool. 288, 242 (2000). 10.1002/1097-010X(20001015)288:3<242::AID-JEZ5>3.0.CO;2-O
    • (2000) J. Exp. Zool. , vol.288 , pp. 242
    • Ancel, L.W.1    Fontana, W.2
  • 3
    • 0036903361 scopus 로고    scopus 로고
    • 10.1002/bies.10190
    • W. Fontana, BioEssays 24, 1164 (2002). 10.1002/bies.10190
    • (2002) BioEssays , vol.24 , pp. 1164
    • Fontana, W.1
  • 4
    • 33744995763 scopus 로고    scopus 로고
    • 10.1088/0034-4885/69/5/R04
    • P. Schuster, Rep. Prog. Phys. 69, 1419 (2006). 10.1088/0034-4885/69/5/R04
    • (2006) Rep. Prog. Phys. , vol.69 , pp. 1419
    • Schuster, P.1
  • 7
    • 0015133749 scopus 로고
    • 10.1007/BF00623322
    • M. Eigen, Naturwiss. 58, 465 (1971). 10.1007/BF00623322
    • (1971) Naturwiss. , vol.58 , pp. 465
    • Eigen, M.1
  • 11
    • 0034698298 scopus 로고    scopus 로고
    • 10.1126/science.289.5478.448
    • E. A. Schultes and D. P. Bartel, Science 289, 448 (2000). 10.1126/science.289.5478.448
    • (2000) Science , vol.289 , pp. 448
    • Schultes, E.A.1    Bartel, D.P.2
  • 17
    • 34547642136 scopus 로고    scopus 로고
    • 10.1088/1742-5468/2007/05/P05011
    • Sumedha, O. C. Martin, and L. Peliti, J. Stat. Mech. 2007, P05011. 10.1088/1742-5468/2007/05/P05011
    • J. Stat. Mech. , vol.2007 , pp. 05011
    • Sumedha, O.C.M.1    Peliti, L.2
  • 19
    • 0034895529 scopus 로고    scopus 로고
    • 10.1006/bulm.2001.0244
    • C. O. Wilke, Bull. Math. Biol. 63, 715 (2001). 10.1006/bulm.2001.0244
    • (2001) Bull. Math. Biol. , vol.63 , pp. 715
    • Wilke, C.O.1
  • 29
    • 7044226636 scopus 로고    scopus 로고
    • edited by J. L. Gross and J. Yellen (CRC Press, New York
    • Handbook of Graph Theory, edited by, J. L. Gross, and, J. Yellen, (CRC Press, New York, 2004).
    • (2004) Handbook of Graph Theory
  • 32
    • 0035363060 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.63.066123
    • P. L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123 (2001). 10.1103/PhysRevE.63.066123
    • (2001) Phys. Rev. e , vol.63 , pp. 066123
    • Krapivsky, P.L.1    Redner, S.2
  • 34
    • 0038483826 scopus 로고    scopus 로고
    • 10.1126/science.286.5439.509
    • A.-L. Barabási and R. Albert, Science 286, 509 (1999). 10.1126/science.286.5439.509
    • (1999) Science , vol.286 , pp. 509
    • Barabási, A.-L.1    Albert, R.2
  • 35
    • 0038718854 scopus 로고    scopus 로고
    • 10.1137/S003614450342480
    • M. E. J. Newman, SIAM Rev. 45, 167 (2003). 10.1137/S003614450342480
    • (2003) SIAM Rev. , vol.45 , pp. 167
    • Newman, M.E.J.1
  • 38
    • 0033080745 scopus 로고    scopus 로고
    • 10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
    • S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster, Biopolymers 49, 145 (1999). 10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
    • (1999) Biopolymers , vol.49 , pp. 145
    • Wuchty, S.1    Fontana, W.2    Hofacker, I.L.3    Schuster, P.4
  • 39
    • 73649136655 scopus 로고    scopus 로고
    • A matrix is irreducible when the corresponding graph is connected; in our case any pair of nodes i and j of the network are connected via mutations by definition. Irreducibility plus the condition Mii >0, i makes matrix M primitive. See for further details on matrix theory and spectral graph theory.
    • A matrix is irreducible when the corresponding graph is connected; in our case any pair of nodes i and j of the network are connected via mutations by definition. Irreducibility plus the condition Mii >0, i makes matrix M primitive. See for further details on matrix theory and spectral graph theory.
  • 40
    • 73649109391 scopus 로고    scopus 로고
    • In order to calculate the evolution of the population to equilibrium we cannot choose an homogeneous distribution for a completely connected graph, since this initial condition is proportional to the equilibrium distribution. The initial condition n (0) = (1,0,0,...,0) applied to the star graph does not modify the reported dependence with m.
    • In order to calculate the evolution of the population to equilibrium we cannot choose an homogeneous distribution for a completely connected graph, since this initial condition is proportional to the equilibrium distribution. The initial condition n (0) = (1,0,0,...,0) applied to the star graph does not modify the reported dependence with m.
  • 41
    • 73649149540 scopus 로고    scopus 로고
    • Two square matrices A and B are called similar if A= N-1 BN for some invertible matrix N. Similar matrices share many properties, such as the eigenvalues (but not the eigenvectors) and the fact that, if one is diagonalizable, the other is also diagonalizable. Applying this definition, M′ =EM is similar to the symmetric matrix E1/2 M E1/2, because E1/2 is invertible [it is diagonal and (E1/2) ii >0, i]. This means that the eigenvalues λi of M′ are real and the matrix diagonalizable, allowing the decomposition shown in Eq.
    • Two square matrices A and B are called similar if A= N-1 BN for some invertible matrix N. Similar matrices share many properties, such as the eigenvalues (but not the eigenvectors) and the fact that, if one is diagonalizable, the other is also diagonalizable. Applying this definition, M′ =EM is similar to the symmetric matrix E1/2 M E1/2, because E1/2 is invertible [it is diagonal and (E1/2) ii >0, i]. This means that the eigenvalues λi of M′ are real and the matrix diagonalizable, allowing the decomposition shown in Eq..
  • 42
    • 73649129042 scopus 로고    scopus 로고
    • It is important to mention that the highly symmetric configuration of this network forbids to use an homogeneous initial condition n (0) = 1 3 (1,1,1) if we wish to use the approximation tε1, since it yields α2 =0, μ and β, and thus violates the conditions of applicability of the first-order approximation to the time to equilibrium. The actual time to equilibrium tε is in that particular case dominated by the ratio λ1 / λ3.
    • It is important to mention that the highly symmetric configuration of this network forbids to use an homogeneous initial condition n (0) = 1 3 (1,1,1) if we wish to use the approximation tε1, since it yields α2 =0, μ and β, and thus violates the conditions of applicability of the first-order approximation to the time to equilibrium. The actual time to equilibrium tε is in that particular case dominated by the ratio λ1 / λ3.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.