-
1
-
-
0014421064
-
-
10.1038/217624a0
-
M. Kimura, Nature (London) 217, 624 (1968). 10.1038/217624a0
-
(1968)
Nature (London)
, vol.217
, pp. 624
-
-
Kimura, M.1
-
2
-
-
0034667684
-
-
10.1002/1097-010X(20001015)288:3<242::AID-JEZ5>3.0.CO;2-O
-
L. W. Ancel and W. Fontana, J. Exp. Zool. 288, 242 (2000). 10.1002/1097-010X(20001015)288:3<242::AID-JEZ5>3.0.CO;2-O
-
(2000)
J. Exp. Zool.
, vol.288
, pp. 242
-
-
Ancel, L.W.1
Fontana, W.2
-
3
-
-
0036903361
-
-
10.1002/bies.10190
-
W. Fontana, BioEssays 24, 1164 (2002). 10.1002/bies.10190
-
(2002)
BioEssays
, vol.24
, pp. 1164
-
-
Fontana, W.1
-
4
-
-
33744995763
-
-
10.1088/0034-4885/69/5/R04
-
P. Schuster, Rep. Prog. Phys. 69, 1419 (2006). 10.1088/0034-4885/69/5/R04
-
(2006)
Rep. Prog. Phys.
, vol.69
, pp. 1419
-
-
Schuster, P.1
-
5
-
-
0028196714
-
-
10.1098/rspb.1994.0040
-
P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker, Proc. R. Soc. B 255, 279 (1994). 10.1098/rspb.1994.0040
-
(1994)
Proc. R. Soc. B
, vol.255
, pp. 279
-
-
Schuster, P.1
Fontana, W.2
Stadler, P.F.3
Hofacker, I.L.4
-
7
-
-
0015133749
-
-
10.1007/BF00623322
-
M. Eigen, Naturwiss. 58, 465 (1971). 10.1007/BF00623322
-
(1971)
Naturwiss.
, vol.58
, pp. 465
-
-
Eigen, M.1
-
11
-
-
0034698298
-
-
10.1126/science.289.5478.448
-
E. A. Schultes and D. P. Bartel, Science 289, 448 (2000). 10.1126/science.289.5478.448
-
(2000)
Science
, vol.289
, pp. 448
-
-
Schultes, E.A.1
Bartel, D.P.2
-
12
-
-
33845879635
-
-
10.1126/science.1132745
-
K. Koelle, S. Cobey, B. Grenfell, and M. Pascual, Science 314, 1898 (2006). 10.1126/science.1132745
-
(2006)
Science
, vol.314
, pp. 1898
-
-
Koelle, K.1
Cobey, S.2
Grenfell, B.3
Pascual, M.4
-
13
-
-
14444274290
-
-
edited by F. Morán, P. Chacón, (Springer, Berlin, J. J. Merelo, and A. Moreno
-
C. V. Forst, C. Reidys, and J. Weber, in Advances in Artificial Life, 929 of Lecture Notes in Artificial Intelligence, edited by, F. Morán, A. Moreno, J. J. Merelo and, P. Chacón (Springer, Berlin, 1995), p. 128.
-
(1995)
Advances in Artificial Life, 929 of Lecture Notes in Artificial Intelligence
, pp. 128
-
-
Forst, C.V.1
Reidys, C.2
Weber, J.3
-
17
-
-
34547642136
-
-
10.1088/1742-5468/2007/05/P05011
-
Sumedha, O. C. Martin, and L. Peliti, J. Stat. Mech. 2007, P05011. 10.1088/1742-5468/2007/05/P05011
-
J. Stat. Mech.
, vol.2007
, pp. 05011
-
-
Sumedha, O.C.M.1
Peliti, L.2
-
19
-
-
0034895529
-
-
10.1006/bulm.2001.0244
-
C. O. Wilke, Bull. Math. Biol. 63, 715 (2001). 10.1006/bulm.2001.0244
-
(2001)
Bull. Math. Biol.
, vol.63
, pp. 715
-
-
Wilke, C.O.1
-
22
-
-
33846018059
-
-
10.1371/journal.ppat.0020136
-
F. M. Codoñer, J. A. Daros, R. V. Solé, and S. F. Elena, PLoS Pathog. 2, e136 (2006). 10.1371/journal.ppat.0020136
-
(2006)
PLoS Pathog.
, vol.2
, pp. 136
-
-
Codoñer, F.M.1
Daros, J.A.2
Solé, R.V.3
Elena, S.F.4
-
29
-
-
7044226636
-
-
edited by J. L. Gross and J. Yellen (CRC Press, New York
-
Handbook of Graph Theory, edited by, J. L. Gross, and, J. Yellen, (CRC Press, New York, 2004).
-
(2004)
Handbook of Graph Theory
-
-
-
32
-
-
0035363060
-
-
10.1103/PhysRevE.63.066123
-
P. L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123 (2001). 10.1103/PhysRevE.63.066123
-
(2001)
Phys. Rev. e
, vol.63
, pp. 066123
-
-
Krapivsky, P.L.1
Redner, S.2
-
34
-
-
0038483826
-
-
10.1126/science.286.5439.509
-
A.-L. Barabási and R. Albert, Science 286, 509 (1999). 10.1126/science.286.5439.509
-
(1999)
Science
, vol.286
, pp. 509
-
-
Barabási, A.-L.1
Albert, R.2
-
35
-
-
0038718854
-
-
10.1137/S003614450342480
-
M. E. J. Newman, SIAM Rev. 45, 167 (2003). 10.1137/S003614450342480
-
(2003)
SIAM Rev.
, vol.45
, pp. 167
-
-
Newman, M.E.J.1
-
36
-
-
31344474880
-
-
10.1016/j.physrep.2005.10.009
-
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Phys. Rep. 424, 175 (2006). 10.1016/j.physrep.2005.10.009
-
(2006)
Phys. Rep.
, vol.424
, pp. 175
-
-
Boccaletti, S.1
Latora, V.2
Moreno, Y.3
Chavez, M.4
Hwang, D.-U.5
-
38
-
-
0033080745
-
-
10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
-
S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster, Biopolymers 49, 145 (1999). 10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G
-
(1999)
Biopolymers
, vol.49
, pp. 145
-
-
Wuchty, S.1
Fontana, W.2
Hofacker, I.L.3
Schuster, P.4
-
39
-
-
73649136655
-
-
A matrix is irreducible when the corresponding graph is connected; in our case any pair of nodes i and j of the network are connected via mutations by definition. Irreducibility plus the condition Mii >0, i makes matrix M primitive. See for further details on matrix theory and spectral graph theory.
-
A matrix is irreducible when the corresponding graph is connected; in our case any pair of nodes i and j of the network are connected via mutations by definition. Irreducibility plus the condition Mii >0, i makes matrix M primitive. See for further details on matrix theory and spectral graph theory.
-
-
-
-
40
-
-
73649109391
-
-
In order to calculate the evolution of the population to equilibrium we cannot choose an homogeneous distribution for a completely connected graph, since this initial condition is proportional to the equilibrium distribution. The initial condition n (0) = (1,0,0,...,0) applied to the star graph does not modify the reported dependence with m.
-
In order to calculate the evolution of the population to equilibrium we cannot choose an homogeneous distribution for a completely connected graph, since this initial condition is proportional to the equilibrium distribution. The initial condition n (0) = (1,0,0,...,0) applied to the star graph does not modify the reported dependence with m.
-
-
-
-
41
-
-
73649149540
-
-
Two square matrices A and B are called similar if A= N-1 BN for some invertible matrix N. Similar matrices share many properties, such as the eigenvalues (but not the eigenvectors) and the fact that, if one is diagonalizable, the other is also diagonalizable. Applying this definition, M′ =EM is similar to the symmetric matrix E1/2 M E1/2, because E1/2 is invertible [it is diagonal and (E1/2) ii >0, i]. This means that the eigenvalues λi of M′ are real and the matrix diagonalizable, allowing the decomposition shown in Eq.
-
Two square matrices A and B are called similar if A= N-1 BN for some invertible matrix N. Similar matrices share many properties, such as the eigenvalues (but not the eigenvectors) and the fact that, if one is diagonalizable, the other is also diagonalizable. Applying this definition, M′ =EM is similar to the symmetric matrix E1/2 M E1/2, because E1/2 is invertible [it is diagonal and (E1/2) ii >0, i]. This means that the eigenvalues λi of M′ are real and the matrix diagonalizable, allowing the decomposition shown in Eq..
-
-
-
-
42
-
-
73649129042
-
-
It is important to mention that the highly symmetric configuration of this network forbids to use an homogeneous initial condition n (0) = 1 3 (1,1,1) if we wish to use the approximation tε1, since it yields α2 =0, μ and β, and thus violates the conditions of applicability of the first-order approximation to the time to equilibrium. The actual time to equilibrium tε is in that particular case dominated by the ratio λ1 / λ3.
-
It is important to mention that the highly symmetric configuration of this network forbids to use an homogeneous initial condition n (0) = 1 3 (1,1,1) if we wish to use the approximation tε1, since it yields α2 =0, μ and β, and thus violates the conditions of applicability of the first-order approximation to the time to equilibrium. The actual time to equilibrium tε is in that particular case dominated by the ratio λ1 / λ3.
-
-
-
|