메뉴 건너뛰기




Volumn 20, Issue 3, 2007, Pages 435-450

Modeling the spatial distribution of mineral deposits using neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 73149117059     PISSN: 08908575     EISSN: 19397445     Source Type: Journal    
DOI: 10.1111/j.1939-7445.2007.tb00215.x     Document Type: Article
Times cited : (15)

References (22)
  • 3
    • 0033816133 scopus 로고    scopus 로고
    • Artificial Neural Networks: A New Method for Mineral Prospectivity Mapping
    • W.M. Brown, T.D. Gedeon, D.I. Groves and R.G. Barnes [2000], Artificial Neural Networks: A New Method for Mineral Prospectivity Mapping, J. Austral. Earth Sci. 47, 757–770.
    • (2000) J. Austral. Earth Sci. , vol.47 , pp. 757-770
    • Brown, W.M.1    Gedeon, T.D.2    Groves, D.I.3    Barnes, R.G.4
  • 4
    • 0027525734 scopus 로고
    • Artificial Neural Networks for Land-Cover Classification
    • D.L. Civco [1990], Artificial Neural Networks for Land-Cover Classification, Int. J. Geograph. Infor. Sys. 7, 173–186.
    • (1990) Int. J. Geograph. Infor. Sys. , vol.7 , pp. 173-186
    • Civco, D.L.1
  • 7
    • 0141574613 scopus 로고
    • (eds.) [, 2nd ed., Geological Society of Australia Inc., (Victorian Division), Melbourne Australia
    • G.W. Cochrane, G. Quick and D. Spencer-Jones (eds.) [1995], Introducing Victorian Geology, 2nd ed., Geological Society of Australia Inc. (Victorian Division), Melbourne, Australia.
    • (1995) Introducing Victorian Geology
    • Cochrane, G.W.1    Quick, G.2    Spencer-Jones, D.3
  • 8
    • 0024861871 scopus 로고
    • Approximation by Superpositions of a Sigmoidal Function
    • G. Cybenko [1989], Approximation by Superpositions of a Sigmoidal Function, Math. Control Signals Systems 2, 303–314.
    • (1989) Math. Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0024880831 scopus 로고
    • Multilayer Feed-Forward Networks are Universal Approximators
    • K. Hornick, M. Stinchcombe and H. White [1989], Multilayer Feed-Forward Networks are Universal Approximators, Neural Networks 2, 359–366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0001025418 scopus 로고
    • A Practical Bayesian Framework for Backpropagation Networks
    • D.J.C. MacKay [1992], A Practical Bayesian Framework for Backpropagation Networks, Neural Comp. 4, 448–472.
    • (1992) Neural Comp. , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 13
    • 0029543410 scopus 로고
    • Neural Network Classification of Remote-Sensing Data
    • D.M. Miller, E.J. Kaminsky and S. Rana [1995], Neural Network Classification of Remote-Sensing Data, Computers Geosci. 21, 377–386.
    • (1995) Computers Geosci. , vol.21 , pp. 377-386
    • Miller, D.M.1    Kaminsky, E.J.2    Rana, S.3
  • 14
    • 0029730625 scopus 로고    scopus 로고
    • An Artificial Neural Network (ANN) Based Software Package for Classification of Remotely Sensed Data
    • K.K. Mohanty and T.J. Majumdar [1996], An Artificial Neural Network (ANN) Based Software Package for Classification of Remotely Sensed Data, Computers Geosci. 22, 81–87.
    • (1996) Computers Geosci. , vol.22 , pp. 81-87
    • Mohanty, K.K.1    Majumdar, T.J.2
  • 16
    • 23944502615 scopus 로고    scopus 로고
    • Artificial Neural Networks for Mineral-Potential Mapping: A Case Study from the Aravalli Province, Western India
    • A. Porwal, E.J. Carranza and M. Hale [2003], Artificial Neural Networks for Mineral-Potential Mapping: A Case Study from the Aravalli Province, Western India, Natur. Resources Research 12, 155–171.
    • (2003) Natur. Resources Research , vol.12 , pp. 155-171
    • Porwal, A.1    Carranza, E.J.2    Hale, M.3
  • 17
    • 0028830520 scopus 로고
    • Neural Networks and Discrimination of Seismic Signals
    • G. Romeo, F. Mele and A. Morelli [1995], Neural Networks and Discrimination of Seismic Signals, Computers Geosci. 21, 279–288.
    • (1995) Computers Geosci. , vol.21 , pp. 279-288
    • Romeo, G.1    Mele, F.2    Morelli, A.3
  • 19
    • 0000523292 scopus 로고    scopus 로고
    • Application of a Feed-Forward Neural Network in the Search for Kuroko Deposits in the Hokoruko District, Japan
    • D.A. Singer and R. Kouda [1996], Application of a Feed-Forward Neural Network in the Search for Kuroko Deposits in the Hokoruko District, Japan, Math. Geol. 28, 1017–1023.
    • (1996) Math. Geol. , vol.28 , pp. 1017-1023
    • Singer, D.A.1    Kouda, R.2
  • 20
    • 0141462964 scopus 로고    scopus 로고
    • Inductive Learning Techniques for Mineral Potential Mapping
    • School of Electrical and Electronic Systems Engineering, Queensland University of Technology, Australia
    • A. Skabar [2000], Inductive Learning Techniques for Mineral Potential Mapping, Ph.D. Thesis, School of Electrical and Electronic Systems Engineering, Queensland University of Technology, Australia.
    • (2000) Ph.D. Thesis
    • Skabar, A.1
  • 21
    • 23944453937 scopus 로고    scopus 로고
    • Mapping Mineralization Probabilities Using Multilayer Percep-trons
    • A. Skabar [2005], Mapping Mineralization Probabilities Using Multilayer Percep-trons, Natur. Resources Research 14, 109–123.
    • (2005) Natur. Resources Research , vol.14 , pp. 109-123
    • Skabar, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.